

CHILDREN'S EDUCATION SOCIETY (Regd.) Administrative Office: 1st Phase, JP Nagar, Bengaluru – 560 078 ©: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

(Recognized by the GovL of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi, Approved by A I C.T.E. New Delhi & Recognized by UGC Under Section 2(f), Accredited by NBA, New Delhi, NAAC 'A' Grade with score of 3.24 & Diamond Rating by QS I Guage) Bommanahalli, Hosur Road, Bangalore –560 068. ©: 080 -61754601/602 E-mail: <u>engprincipal@theoxford.edu</u> Web: <u>www.theoxford.engg.org</u>


Details of research papers published

Index

SI. No	Particulars	Page. No
1	Summary	2
2	Research Paper published in 2023-2024	a and a 3 that we want

PRINCIPAL

PRINCIPAL The Oxford Gollege of Engineering Hosur Road

In the year 2023-2024, the faculty of The Oxford College of Engineering has published papers in various International Journals. There are total 155 International publications.

SI. No	Academic Year	No. of Pu	blication
		National	International
1	2023-2024	0	155

Scopus	SCI	Web of Science	Google Scholar	UGC	Total
89	24	2	37	3	155

PRINCIPAL The Oxford College of Engineering Sommanahali, Hasur Road Bengalury-560 088

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

SI.N o	Title of paper	Name of the author/s	Depa rtmen t of the teach er	Name of journal	Year of publicati on	ISSN number	Link to website of the journal	Link to article/paper/a bstrac t of the article	Is it listed in UGC Care list/Scopus/ Web of Science/oth er, mention
1	IoT based Innovative Teaching Learning using Smart Class Rooms	Raghu Ramamo orthy	CSE	IEEE Xplore	2023	978-1- 6654- 9199-0	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/docu ment/10104589	Scopus
2	Classification of COVID-19 with Belief Functions and Deep Neural Network	Raghu Ramamo orthy	CSE	SN Compute r Science (Springer)	2023	2661-8907	https://link.springer .com/journal/42979	https://link.sprin ger.com/article/ 10.1007/s42979- 022-01593-0	Scopus
3	Reliable and Accurate Plant Leaf Disease Detection with Treatment Suggestions Using Enhanced Deep	Raghu Ramamo orthy	CSE	SN Compute r Science (Springer)	2023	2661-8907	https://link.springer .com/journal/42979	https://link.sprin ger.com/article/ 10.1007/s42979- 022-01589-w	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	Learning Techniques								
4	An Empirical Study on E- Commerce Site using Unique AI based Features and Data Science Tools	J Jesy Janet Kumari, Sathya M, Ramya Sri M	CSE	IEEE Xplore	2023	979-8- 3503- 0010-9	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/docu ment/10193110/	Google Schoalr
5	An Empirical Study on E- Commerce Site using Unique AI based Features and Data Science Tools	Sathya M	CSE	IEEE Xplore	2023	979-8- 3503- 0010-9	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/docu ment/10193110/	Google Schoalr
6	An Empirical Study on E- Commerce Site using Unique AI based Features and Data Science Tools	Ramya Sri M	CSE	IEEE Xplore	2023	979-8- 3503- 0010-9	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/docu ment/10193110/	Google Schoalr
7	Prediction of Infant Growth using the	Vinotha D	CSE	IEEE Xplore	2023	979-8- 3503- 9927-1	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/docu ment/10182723	Google Schoalr

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	Random Forest								
	Algorithm								
8	IoT based	Dr. E.	CSE	IEEE	2023	978-1-	https://ieeexplore.ie	https://ieeexplor	Google
	Innovative	Saravana		Xplore		6654-	ee.org/Xplore/hom	e.ieee.org/docu	Schoalr
	Teaching Learning	Kumar				9199-0	<u>e.jsp</u>	ment/10104589	
	using Smart Class								
	Rooms								
9	Classification of	Dr. E.	CSE	SN	2023	2661-8907	https://link.springer	https://link.sprin	Scopus
	COVID-19 with	Saravana		Compute			.com/journal/42979	ger.com/article/	
	Belief Functions	Kumar		r Science				<u>10.1007/s42979-</u>	
	and Deep Neural			(Springer				<u>022-01593-0</u>	
	Network)					
10	Reliable and	Dr. E.	CSE	SN	2023	2661-8907	https://link.springer	https://link.sprin	Scopus
	Accurate Plant	Saravana		Compute			.com/journal/42979	ger.com/article/	
	Leaf Disease	Kumar		r Science				<u>10.1007/s42979-</u>	
	Detection with			(Springer				<u>022-01589-w</u>	
	Treatment)					
	Suggestions Using								
	Enhanced Deep								
	Learning								
	Techniques								
11	A Comprehensive	Dr. E.	CSE	SN	2023	2661-8907	https://link.springer	https://link.sprin	Scopus
	Study of LB	Saravana		Compute			.com/journal/42979	ger.com/article/	
	Technique in Cloud	Kumar		r Science				<u>10.1007/s42979-</u>	
	Infrastructure							<u>022-01588-x</u>	

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

				(Springer					
12	Performance Analysis of Rice Plant Diseases Identification and Classification Methodology	Dr. E. Saravana Kumar	CSE	Wireless Personal Commun ications (Springer)	2023	1572- 834X	https://link.springer .com/journal/11277	https://doi.org/1 0.1007/s11277- 023-10333-3	Scopus
13	A Comprehensive Survey of Pneumonia Diagnosis: Image Processing and DeepLearning Advancements	Ms.S.Vis alini	ISE	IEEE explorer	2023	2473-2001	https://ieeexplore.ie ee.org/xpl/conhom e/10424966/procee ding	https://ieeexplor e.ieee.org/docu ment/10426403	Google Scholar
14	Trends and Challenges of Block Chain in Electronic Health Record System	C A Bindyash ree	ISE	IEEE explorer	2023	2473-2001	https://ieeexplore.ie ee.org/xpl/conhom e/10275782/procee ding	https://ieeexplor e.ieee.org/abstra ct/document/102 76025	Google Scholar
15	Context Monitoring of Patients using Wireless Network	Dr.Vanaj a Roseline	ISE	IEEE	2023	767-7788	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/docu ment/10134482	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

		L		_					
16	Optomechanical	S	ECE	Journal	2023	0974-6900	https://link.springer	https://link.sprin	Scopus
	behaviour of	Mishra,		of Optics			.com/journal/12596	ger.com/article/	
	optical sensor for	Р						<u>10.1007/s12596-</u>	
	measurement of	Sharan,						<u>022-01047-</u>	
	Wagon weight at	K Saara						<u>z#citeas</u>	
	different speeds of								
	the train								
17	Implementation of	Р	ECE	Journal	2023	0974-6900	https://link.springer	https://link.sprin	Scopus
	digital	Sharan,		of Optics			.com/journal/12596	ger.com/article/	
	differentiator and	AM						10.1007/s12596-	
	digital integrator	Upadhya						022-01083-9	
	using quantum dot	ya, MS							
	cellular automata	Manna							
18	1-Dimensional	RB	ECE	Results	2023	2666-9501	https://www.scienc	https://doi.org/1	Scopus
	Silicon Photonic	Gowda,		in Optics			edirect.com/journal	0.1016/j.rio.202	
	Crystal Pressure	Р					/results-in-optics	<u>3.100352</u>	
	Sensor for the	Sharan,							
	Measurement of	K Saara							
	Low Pressure								
19	The development	Preeta	ECE	Optical	2023	2089-4864	https://www.scienc	https://doi.org/1	SCI
	of laboratory	Sharan,		Fiber			edirect.com/journal	0.1016/j.yofte.2	
	downscale rail-	Suchand		Technolo			/optical-fiber-	023.103287	
	wheel test rig	ana		gy			technology		
	model with optical	Mishra,							
	sensors	Anup M							

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

		Upadhay aya							
20	Design and Development of Intelligent Ambulance Concept using AIML IOT and Human interface technologies	Dr Manju Devi,Vij ayalaksh mi V S, Iffat Fatima, Rashmi R ,Dr Suhasini V K,Dr Pavithra G	ECE	Journal of Europea n chemical bulletin	2023	2063-5346	https://www.eurche mbull.com/	https://www.eur chembull.com/u ploads/paper/f88 cf65b03a3b3d11 e6b826bb46e4d 31.pdf	Google Schoalr
21	Analysis and Implementation of multimedia traffic based on IPV4- IPV6 tunneling	Jayaraj N, Dr.Sivak umar	ECE	IEEE	2023	1125-465	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	http://dx.doi.org/ 10.1109/IADCC .2015.7154864	Google Schoalr
22	Pre-current amplifier based trans-impedance	Dr.Manj u Devi	ECE	IJRES	2022	2089-4864	https://ijres.org/	https://ijres.iaesc ore.com/index.p hp/IJRES/article /view/20442	Google Schoalr

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	amplifier for biosensors								
23	"Improved Surface Plasmo× Effect in Ag-based SPR Biosensor with Graphene and WS2:An Approach Towards Low Cost Urine-Glucose Detection, Plasmonics,	Dr.Preeta sharan	ECE	Plasmoni cs	2023	1557-1963	https://link.springer .com/journal/11468	https://link.sprin ger.com/article/ 10.1007/s11468- 023-01945-3	SCI
24	"Design of optical sensor for cancer prognosis prediction using artificial intelligence",	Dr.Preeta sharan	ECE	Journal of Optics	-2023	0974-6900	https://link.springer .com/journal/12596	https://link.sprin ger.com/article/ 10.1007/s12596- 023-01281- z#citeas	Scopus
25	Highly sensitive temperature sensor using one- dimensional Bragg Reflector for biomedical applications	Dr.Preeta sharan	ECE	Biomedi cal Engineer ing / Biomedi zinische Technik	2023	1862- 278X	https://www.degru yter.com/journal/ke y/bmte/html?lang= en	https://doi.org/1 0.1515/bmt- 2022-0482	SCI

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

26	"N× N Clos Digital Cross-Connect Switch Using Quantum Dot Cellular Automata (QCA). Computer Systems Science & amp; amp;	Dr.Preeta sharan	ECE	Compute r Systems Science and Engineer ing	2023	0267-6192	https://www.techsc ience.com/journal/c sse	https://www.tec hscience.com/cs se/v45n3/50733	SCI
27	Women Safety Using Cloud Messaging Technology	Dr.V.Vij aya Kumari	ECE	Journal for Basic Sciences	2023	1006-8341	<u>https://fzgxjckxxb.</u> <u>com/</u>	https://drive.goo gle.com/file/d/1 TApg2Gp0JHo Ko9nuivbOIJicZ 5gQK7n9/view	Scopus
28	Bragg reflector one-dimensional multi-layer structure sensor for the detection of thyroid cancer cells	Preeta Sharan	ECE	TELKO MNIKA (Teleco mmunica tion Computi ng Electroni cs and Control)	2023	2302-9293	https://telkomnika. uad.ac.id/index.php /TELKOMNIKA	http://telkomnik a.uad.ac.id/inde x.php/TELKOM NIKA/article/vie w/24282	Scopus
29	Comparative analysis and design	Preeta Sharan	ECE	Journal of Optics	2023	0972-8821	https://link.springer .com/journal/12596	https://link.sprin ger.com/article/	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

	of high-							<u>10.1007/s12596-</u>	
	performance							<u>022-01004-w</u>	
	photonic crystal								
	add-drop filter for								
	optical switching								
30	Two-Dimensional	Preeta	ECE	Plasmoni	2023	1557-1955	https://link.springer	https://link.sprin	SCI
	Photonic Crystal	Sharan		с			.com/journal/11468	ger.com/article/	
	Biosensor Based on							<u>10.1007/s11468-</u>	
	Gallium Arsenide							<u>023-01857-2</u>	
	Composite Semi-								
	conductive								
	Material for								
	Diabetes Detection								
31	Numerical	Preeta	ECE	Zeitschri	2023	1865-7109	https://www.degru	https://www.deg	SCI
	modelling of 1-	Sharan		ft für			<u>yter.com/journal/ke</u>	ruyter.com/docu	
	dimensional silicon			Naturfor			<u>y/zna/html?lang=de</u>	ment/doi/10.151	
	photonic crystal			schung A			&srsltid=AfmBOor	<u>5/zna-2022-</u>	
	sensor for						hq49nJEOgTVZK	<u>0261/html</u>	
	hydrostatic						H7EJP41UMPatpB		
	pressure						<u>1qWmmb0FV0nA</u>		
	measurement						4hLAAAEeq4		
32	Design of Two-	Preeta	ECE	Silicon	2023	1876-9918	https://link.springer	https://link.sprin	SCI
	Dimensional	Sharan					.com/journal/12633	ger.com/article/	
	Photonic Crystal							<u>10.1007/s12633-</u>	
	Defect Microcavity							<u>023-02448-w</u>	

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	Sensor for Biosensing								
	Application								
33	Highly sensitive bimetallic-metal nitride SPR biosensor for urine glucose detection	Preeta Sharan	ECE	IEEE Transacti ons on NanoBio science	2023	1558-2639	https://ieeexplore.ie ee.org/xpl/RecentIs sue.jsp?punumber= 7728	https://ieeexplor e.ieee.org/abstra ct/document/100 49133	SCI
34	Effect of 2-D nanomaterials on sensitivity of plasmonic biosensor for efficient urine glucose detection	Preeta Sharan	ECE	Frontiers in Materials	2023	22968016	https://www.frontie rsin.org/journals/m aterials	https://www.fro ntiersin.org/artic les/10.3389/fmat s.2022.1106251/ full	SCI
35	Simulation and excitation analysis of nano aperture- array for surface plasmon based memory applications	Preeta Sharan	ECE	Internati onal Journal of Informati on Technolo gy	2023	2511-2104	https://link.springer .com/journal/41870	https://link.sprin ger.com/article/ 10.1007/s41870- 022-01100-x	Scopus
36	Novel design of reversible latches	Preeta Sharan	ECE	Internati onal	2023	2511-2104	https://link.springer .com/journal/41870	https://link.sprin ger.com/article/	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	using feynman gate			Journal				<u>10.1007/s41870-</u>	
	and			of				<u>022-01082-w</u>	
	implementation of			Informati					
	reversible			on					
	combinational			Technolo					
	circuits			gу					
37	Optofluidic	Preeta	ECE	Engineer	2023	2631-8695	https://iopscience.i	https://iopscienc	Scopus
	photonic crystal	Sharan		ing			op.org/journal/263	e.iop.org/article/	
	micro sensor for			Research			<u>1-8695</u>	<u>10.1088/2631-</u>	
	enhanced detection			Express,				<u>8695/ad16a3/me</u>	
	of infectious			IOP				<u>ta</u>	
	diseases			Science					
38	Improved Surface	Preeta	ECE	Plasmoni	2023	1557-1963	https://link.springer	https://link.sprin	Scopus/SCIE
	Plasmon Effect in	Sharan		с,			.com/journal/11468	ger.com/article/	
	Ag-based SPR			Springer				<u>10.1007/s11468-</u>	
	Biosensor with							<u>023-01945-3</u>	
	Graphene and								
	WS2: An Approach								
	Towards Low Cost								
	Urine-Glucose								
20	Detection	D	EGE		2022	0054 6000			
39	Real-time	Preeta	ECE	Journal	2023	0974-6900	https://link.springer	https://link.sprin	Scopus
	implementation of	Sharan		of			.com/journal/12596	ger.com/article/	
	optical sensor on			Optics,				<u>10.1007/s12596-</u>	
				Springer				<u>023-01431-3</u>	

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

	lab rig model for								
	speed estimation								
40	Effect of 2-D	Preeta	ECE	Frontiers	2023	2296-8016	https://www.frontie	https://www.fro	Scopus/SCI
	nanomaterials on	Sharan		in			rsin.org/journals/m	ntiersin.org/artic	
	sensitivity of			Materials			aterials	les/10.3389/fmat	
	plasmonic							s.2023.1333014/	
	biosensor for							<u>full</u>	
	efficient urine								
	glucose detection								
41	Measurement	Preeta	ECE	Journal	2023	0974-6900	https://link.springer	https://link.sprin	Scopus
	model of integrated	Sharan		of			.com/journal/12596	ger.com/article/	
	FBG sensor for			Optics,				10.1007/s12596-	
	beam structure			Springer				023-01441-1	
42	Two-dimensional	Preeta	ECE	Plasmoni	2023	1557-1963	https://link.springer	https://link.sprin	Scopus/SCIE
	photonic crystal	Sharan		с,			.com/journal/11468	ger.com/article/	
	biosensor based on			Springer				<u>10.1007/s11468-</u>	
	gallium arsenide							023-01857-2	
	composite semi-								
	conductive material								
	for diabetes								
	detection								
43	Design of Two-	Preeta	ECE	Silicon,	2023	1876-9918	https://link.springer	https://link.sprin	Scopus /SCIE
	Dimensional	Sharan		Springer			.com/journal/12633	ger.com/article/	
	Photonic Crystal							10.1007/s12633-	
	Defect Microcavity							<u>023-02448-w</u>	

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	Sensor for								
	Biosensing								
4.4	Application		FOF	T 1	2022	0074 (000	1	1	0
44	Comparative	Preeta	ECE	Journal	2023	0974-6900	https://link.springer	https://link.sprin	Scopus
	analysis and design	Sharan		of			.com/journal/12596	ger.com/article/	
	of high-			Optics,				<u>10.1007/s12596-</u>	
	performance			Springer				<u>022-01004-w</u>	
	photonic crystal								
	add-drop filter for								
	optical switching		_ ~ ~						~
45	Early Detection of	Remya	ECE	Internati	2023	E-ISSN:	https://www.ijfmr.c	https://doi.org/1	Scopus
	The Glaucoma and	Bharathy		onal		2582-2160	<u>om/about-</u>	<u>0.36948/ijfmr.20</u>	
	Other Intra-Ocular			Journal			journal.php	<u>23.v05i05.6685</u>	
	Pressure Elevation			For					
	Diseases Using			Multidis					
	Hardware Efficient			ciplinary					
	Machine Learning			Research					
	Approach								
46	Women Safety	Dr.V.Vij	ECE	Journal	2023	ISSN NO :	https://fzgxjckxxb.	https://fzgxjckxx	UGC
	Using Cloud	aya		For		1006-8341	<u>com/</u>	<u>b.com/volume-</u>	
	Messaging	Kumari		Basic				23-issue-2-2023/	
	Technology			Sciences					
47	Comparison of	Dr.V.Vij	ECE	Advance	2023		https://www.bookp	https://doi.org/1	Google
	Face Recognition	aya		s and			i.org/bookstore/pro	0.9734/bpi/acst/	Scholar
		Kumari		challeng			duct/advances-and-	<u>v9/6966C</u>	

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	Using PCLDA and Neural Network			es in science and technolo gy			<u>challenges-in-</u> <u>science-and-</u> <u>technology-vol-1/</u>		
48	BALLORG: state of the art Image restoration Using Block-Augmented Lagrangian and Low-Rank gradients	Dr.Laya Tojo, Dr Manju Devi	ECE	IEIE Transacti on on Smart Processi ng & Computi ng	2023	2287-5255	https://www.dbpia. co.kr/	https://doi.org/1 0.5573/IEIESPC .2023.12.1.1	SCI
49	Real time implementation of fiber Bragg grating sensor in monitoring flat wheel detection for railways	Preeta Sharan	ECE	Engineer ing Failure Analysis	2023	1350-6307	https://www.scienc edirect.com/journal /engineering- failure-analysis	https://www.scie ncedirect.com/sc ience/article/abs/ pii/S135063072 2003508	SCI
50	THD minimization of ZVT -ZCT Quasi Resonant SEPIC Converter with proposed	Nisha C Rani, Dr N Amuthan	EEE	IEEE Explore	2023	2473-2001	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/docu ment/10112420	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	Harris Hawks								
	Optimization								
	Technique								
51	Design and	Preetam	EEE	IEEE	2023	2473-2001	https://ieeexplore.ie	https://ieeexplor	Scopus
	Analysis of	Ambudk		Explore			ee.org/Xplore/hom	e.ieee.org/docu	
	Pressure Sensor	ar;Anup					<u>e.jsp</u>	ment/10112526	
	based on Micro	Μ							
	Hole Photonic	Upadhay							
	Crystal Slab	aya;Preet							
		а							
		Sharan;N							
		isha C							
		Rani							
52	Design and	Nisha C	EEE	IEIE	2023	2287-5255	https://www.dbpia.	https://doi.org/1	Scopus
	Implement a Quasi-	Rani		Transacti			<u>co.kr/</u>	0.5573/IEIESPC	
	resonant Cuk			ons on				.2023.12.5.448	
	Converter for			Smart					
	Photovoltaic			Processi					
	Applications"			ng and					
				Computi					
				ng, vol.					
				12, no. 5					
53	"Grid Connected	Nisha C	EEE	Internati	2023	Electronic	https://link.springer	https://link.sprin	Scopus
	PV based on Quasi	Rani		onal		ISSN2511	.com/journal/41870	ger.com/article/	
	Resonant Zeta			Journal		-2112			

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

	Converter with			of		Print ISSN		10.1007/s41870-	
				Informati					
	Harris Hawk					2511-2104		<u>023-01594-z</u>	
	Optimization			on					
	Algorithm for the			Technolo					
	Implementation of			gу					
	PI Controller",			(BJIT),					
				Springer.					
54	THD minimization	Nisha C	EEE	IEEE	2023		https://ieeexplore.ie	https://ieeexplor	Scopus
	of ZVT -ZCT	Rani		Xplorer		ISBN:978-	ee.org/document/1	e.ieee.org/docu	-
	Quasi Resonant			1		93-80544-	0112420	ment/10112420	
	SEPIC Converter					47-2			
	with proposed					., _			
	Harris Hawks								
	Optimization								
	-								
<i></i>	Technique.	Nisha C	DDD	IEEE	2022		1.44	1	C
55	Design and	Nisha C	EEE	IEEE	2023	ICDN 070	https://ieeexplore.ie	https://ieeexplor	Scopus
	Analysis of	Rani		Xplorer		ISBN:978-	ee.org/Xplore/hom	e.ieee.org/docu	
	Pressure Sensor					93-80544-	<u>e.jsp</u>	ment/10112526	
	based on Micro					47-2			
	Hole Photonic								
	Crystal Slab.								
56	Space vector Pulse	Resna S	EEE	IEEE	2023	ISBN:979-	https://ieeexplore.ie	https://ieeexplor	Scopus
	Width Modulation	R		Xplorer		8-3503-	ee.org/Xplore/hom	e.ieee.org/docu	
	with 7 Level			_		3624-5	e.jsp	ment/10117778	
	ANPC Converters								
56	Space vector Pulse Width Modulation		EEE		2023	8-3503-	-	e.ieee.org/docu	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	for Capacitor Voltage Balancing								
57	Space vector Pulse Width Modulation with 7 Level ANPC Converters for Capacitor Voltage Balancing	Resna S R	EEE	IEEE Explore	2023	979-8- 3503- 3624-5	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/docu ment/10117778	Goolge Scholar
58	Implementation of digital differentiator and digital integrator using quantum dot cellular automata	Anup M Upadhya ya, Preeta Sharan, Maneesh C Srivastav a	Mech anical Engg.	Journal of Optics	2023	0974-6900	https://link.springer .com/journal/12596	https://link.sprin ger.com/article/ 10.1007/s12596- 022-01083-9	Scopus
59	High temperature erosion performance of NiCrAlY/Cr2O3/Y SZ plasma spray coatings	GMS Reddy, CD Prasad, P Patil, G Shetty, N Kakur,	Mech anical Engg.	Transacti ons of the IMF	2023	1745-9192	https://www.tandfo nline.com/journals/ ytim20	https://www.tan dfonline.com/do i/abs/10.1080/00 202967.2023.22 08899	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

		MR Ramesh							
60	Investigation of High-Temperature Erosion Behavior of NiCrAlY/TiO2 Plasma Coatings on Titanium Substrate	G Madhu Sudana Reddy, C Durga Prasad, Shanthal a Kollur, Avinash Lakshmi kanthan, R Suresh Kumar, CR Apramey a	Mech anical Engg.	Advance d Function al and Structura l Thin Films and Coatings	2023	1543-1851	https://link.springer .com/article/10.100 7/s11837-023- 06327-y	https://link.sprin ger.com/article/ 10.1007/s11837- 023-05894-4	Scopus
61	Design of Two- Dimensional Photonic Crystal Defect Microcavity Sensor for Biosensing Application	Anup M Upadhya ya	ME	Silicon, Springer	2023	1876-9918	https://link.springer .com/journal/12633	https://link.sprin ger.com/article/ 10.1007/s12633- 023-02448-w	Scopus /SCIE

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

62	Microstructure, mechanical and wear properties of SiC and Mo reinforced NiCr microwave	Raviprak ash M	ME	Advance s in Materials and Processi ng Technolo	2023	2374- 068X	https://www.tandfo nline.com/journals/ tmpt20	https://www.tan dfonline.com/do i/abs/10.1080/23 74068X.2023.22 57937	Scopus
	cladding			gies, Taylors and Francis					
63	High temperature erosion performance of NiCrAlY/Cr2O3/Y SZ plasma spray coatings	Madhu Sudana Reddy G	ME	Transcati ons of IMF, taylors and Francis	2023	17459192	https://www.tandfo nline.com/journals/ ytim20	https://www.tan dfonline.com/do i/abs/10.1080/00 202967.2023.22 08899	Scopus
64	Optofluidic photonic crystal micro sensor for enhanced detection of infectious diseases	Anup M Upadhya ya	ME	Engineer ing Research Express, IOP Science	2023	2631-8695	https://iopscience.i op.org/journal/263 1-8695	https://iopscienc e.iop.org/article/ 10.1088/2631- 8695/ad16a3/me ta	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

			1						1
65	Effects of Polypropylene Waste Addition as Coarse Aggregates in Concrete: Experimental Characterization and Statistical Analysis	D. C. Naveen, K. Naresh ,B. S. Keerthi Gowda ,Madhu Sudana Reddy G ,C. Durga Prasad,a nd Ragavan antham Shanmug	ME	Advance s in Materials Science and Engineer ing	2023	1687-8434	https://onlinelibrary .wiley.com/journal/ 5928	https://www.hin dawi.com/journa ls/amse/2022/78 86722/	Scopus
		am							~
66	Seismic Behavior of High Rise Structure with Plan Irregularity	Shivanan d C.G, Charan M Kudtarka r, Dhanyas	Civil Engin eering	IJESC	2023	2321-3361	https://www.journa lsindexed.com/202 1/02/international- journal-of- engineering_10.ht ml	https://drive.goo gle.com/file/d/1 erLdopyIcffGyV hJNnCpptyMfR quazVJ/view?us p=sharing	Goolge Scholar

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

67	Seismic Response Of High Rise Structure With Vertical Irregularity	hree G.B, Prakash N Shivanan d C.G, Dhanyas hree G B, Charan M Kudarkar	Civil Engin eering	IJESC	2023	2321-3361	https://www.journa lsindexed.com/202 1/02/international- journal-of- engineering_10.ht ml	https://drive.goo gle.com/file/d/1 SEPY1FhOv9A eo2eupMindbU Llz7r53_N/view ?usp=sharing	Goolge Scholar
68	Construction Sequence Analysis of G+30 RCC, Steel Residential Building with Floating Column	Prashant h Hathwar T.S, Moham mad Rizwanu ddin	Civil Engin eering	IJERT	2023	2278-0181	https://www.ijert.or g/	https://www.ijer t.org/constructio n-sequence- analysis-of-g- 30-rcc-steel- residential- building-with- floating-colum	Goolge Scholar
69	Statistical Optimization of Crude Oil Degradation using Bacterial	Indulekh a John, Valarmat hy K. and	BT	Research Journal of Biotechn ology	2023	ISSN: 0973-6263	https://worldresearc hersassociations.co m/biotech.aspx	https://doi.org/1 0.1016/j.jgeb.20 18.01.001	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	Consortium and their Enzymes	Manjuna tha B.K							
70	Antineoplastic Effects of Mucuna pruriens Against Human Colorectal Adenocarcinoma	Manjuna tha B.K	BT	Applied Biochem istry and Biotechn ology	2023	0273-2289	https://link.springer .com/	https://pubmed.n cbi.nlm.nih.gov/ 37395947/	Scopus
71	Isolation, Purification and Anti-Cancer Potency of Novel Compound 6- Ethyl-3-Hydroxy- 4-Methyl-8aH- Xanthen 9(10aH)- One from Mesua ferrea Linn from Western Ghats of Karnataka.	Manjuna tha B.K	BT	Indian Journal of Pharmac eutical Sciences	2023	0250- 474X	https://www.ijpsonl ine.com/	https://www.ijps online.com/abstr act/isolation- purification-and- anticancer- potency-of- novel- compound- 6ethyl3hydroxy 4methyl8ahxant hen910ahone- from-emmesua- fer- 5208.html#:~:te xt=The%20struc ture%20is%20pr edicted%20and, drug%20of%20	Web of Science

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

								<u>177.006%20%C</u> <u>2%B5g%2Fml.</u>	
71	Antineoplastic Effects of Mucuna pruriens Against Human Colorectal Adenocarcinoma	Sagar Seethara maiah,Vi dya Shimoga Muddap pa,Manju natha Bukkam budhi Krishnas wamy,Ra shmi Kanugod u Vasappa	Biotec hnolo gy	Applied Biochem istry and Biotechn ology	2023	0273-2289	https://link.springer .com/journal/12010	https://doi.org/1 0.1007/s12010- 023-04598-4	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

73	A Comparative	Dr P	AIML	Grenze	2023	2395-5287	https://www.ebsco.	https://openurl.e	Scopus
15	Study on Resource	Bindhu		Internati	2023	2375 5201	com/	bsco.com/EPDB	beopus
	Aware Allocation	madhavi		onal				%3Agcd%3A8	
		maunavi							
	and Loadbalancing			Journal				<u>%3A5416696/de</u>	
	Techniques for			of				tailv2?sid=ebsco	
	Cloud Computing			Engineer				<u>%3Aplink%3As</u>	
				ing and				cholar&id=ebsc	
				Technolo				o%3Agcd%3A1	
				gy, Jan				<u>62319921&crl=f</u>	
				Issue				<u>&link_origin=w</u>	
								ww.google.com	
74	Real - Time	Dr P	AIML	IEEE	2023	978-93-	https://ieeexplore.ie	https://ieeexplor	SCOPUS
	Applications of	Bindhu		EXPLO		80544-51-	ee.org/Xplore/hom	e.ieee.org/docu	
	Video	madhavi		RER		9	<u>e.jsp</u>	ment/10112575/	
	Compression in the								
	Field of Medical								
	Environments								
75	IoT	Prof.	MCA	IEEE	2023	ISBN:	https://ieeexplore.ie	https://ieeexplor	Scopus
	Implementation in	Dharamv		Explore		979-8-	ee.org/Xplore/hom	e.ieee.org/docu	-
	Various	ir		1		3503-	e.jsp	ment/10183094/	
	Applications: A					9926-4		authors#authors	
	Detailed Review of								
	Cyber Security								
	Issues and								
	Challenges								

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

76	IoT-Based	Prof.	MCA	IEEE	2023	ISBN:	https://ieeexplore.ie	https://ieeexplor	Scopus
	Diagnosis and	Dharamv		Explore		979-8-	ee.org/Xplore/hom	e.ieee.org/docu	
	Recommendation	ir		-		3503-	<u>e.jsp</u>	ment/10182640	
	System for Chronic					9926-5			
	Diseases Using								
	Patient Health								
	Records								
77	Anticorrosive	C.H.	Physi	Journal	Jul-05	0361-5235	https://link.springer	https://doi.org/1	Scopus
	Polypyrrole/Bariu	Abdul	cs	of			.com/journal/11664	<u>0.1007/s11664-</u>	
	m Ferrite	Kadar		Electroni				<u>022-10179-8</u>	
	(PPy/BaFe12O19)			с					
	Composites with			Materials					
	Tunable Electrical								
	Response for								
	Electromagnetic								
	Wave Absorption								
	and Shielding								
	Performance								
78	Design and	H.N.	chemi	Indian	2023	ISSN:	https://or.niscpr.res	https://or.niscpr.	SCIE
	Analysis of 2D	Gayathri	stry	Journal		0975-1017	.in/index.php/IJEM	res.in/index.php/	
	Photonic Biosensor			of			<u>S/index</u>	IJEMS/article/vi	
	with ML for			Engineer				<u>ew/2520</u>	
	Respiratory Virus			ing &					
	Detection			Materials					
				Sciences					

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

79	Encapsulated Co-	Usha	chemi	Spectroc	2023	1386-1425	https://www.scienc	https://doi.org/1	Scopus
	ZnO nanospheres	Jinendra	stry	himica		1000 1120	edirect.com/journal	0.1016/j.saa.202	~>pwb
	as degradation tool	Jinenara	Sury	Acta Part			/spectrochimica-	3.122879	
	for organic			A:			acta-part-a-	<u>3.122077</u>	
	pollutants:			A. Molecula			molecular-and-		
	Synthesis,			r and			biomolecular-		
	morphology,			Biomole					
	adsorption and			cular			<u>spectroscopy</u>		
	photo luminescent								
	1			Spectros					
00	investigations	TTN	CI	сору	2022	2472 2001	1	1	C
80	FEM Analysis of	H N	Chem	IEEE	2023	2473-2001	https://ieeexplore.ie	https://ieeexplor	Scopus
	Railway Brake	Gayathri	istry	Xplorer			ee.org/Xplore/hom	e.ieee.org/docu	
	Disc for Safety of						<u>e.jsp</u>	ment/10112430	
	Train								
81	Design and	ΗN	Chem	Results	2023	2666-9501	https://www.scienc	https://doi.org/1	Scopus
	simulation of a	Gayathri	istry	in Optics			edirect.com/journal	<u>0.1016/j.rio.202</u>	
	highly sensitive						/results-in-optics	<u>3.100376</u>	
	one-dimensional								
	photonic crystal for								
	different chemical								
	sensing								
	applications								
82	Restrained and	Hemalat	Mathe	Commun	2023	0975-8607	http://www.rgnpubl	https://www.rgn	Google
	Total restrained	ha NC	matics	ication in			ications.com	publications.co	Scholar
				Mathema				m/journals/index	
L	1	I	1	I	I	1			1

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	domination of ladder graphs			tics and Applicati ons				<u>.php/cma/article/</u> view/2569	
83	An Enhanced Location-Aided Ant Colony Routing for Secure Communication in Vehicular Ad Hoc Networks	Dr. Raghu R	CSE	Human- Centric Intellige nt Systems	2024	2667-1336	https://link.springer .com/journal/44230	https://link.sprin ger.com/article/ 10.1007/s44230- 023-00059-7	Google Scholar
84	An Energy Efficient IoT Based Smart Street Lighting Using Low Cost SOC	Dr. Raghu R	CSE	IEEE Explore	2024	979-8- 3503- 7180-2	https://ieeexplore.ie ee.org/xpl/conhom e/10592863/procee ding	https://ieeexplor e.ieee.org/abstra ct/document/105 93834	SCOPUS
85	Comparative Study and Analysis of Cloud Container Technology	Dr E Saravana Kumar & Dr. Raghu R	CSE	IEEE Explore	2024	978-93- 80544-51- 9	https://ieeexplore.ie ee.org/xpl/conhom e/10498128/procee ding	https://ieeexplor e.ieee.org/abstra ct/document/104 99108	SCOPUS
86	Analysis of Changes and Influences Using Remote Sensing and Geodetectors	E. Saravana Kumar	CSE	Remote Sensing in Earth Systems Sciences	2024	2520-8209	https://link.springer .com/article/10.100 7/s41976-024- 00112-4	https://doi.org/1 0.1007/s41976- 024-00112-4	Sopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	on How Human Activity Affects Ulansuhai Lake								
87	Basin Ecology Priority Based Lightweight Cluster Routing for Efficient Communication in Vehicular Ad Hoc Networks	Dr. Raghu R	CSE	Central Asian Journal of Mathema tical Theory and Compute r Science	2024	2660-5309	https://cajmtcs.cent ralasianstudies.org/ index.php/CAJMT <u>CS/index</u>	https://cajmtcs.c entralasianstudie s.org/index.php/ CAJMTCS/artic le/view/618	Google Scholar
88	Design and analysis of a fiber Bragg grating- based foot pressure assessment system	Preeta Sharan	ECE	Journal of Biophoto nics, Wiley	2024	1864-0648	https://onlinelibrary .wiley.com/journal/ 18640648	https://onlinelibr ary.wiley.com/d oi/abs/10.1002/j bio.202400070	Scopus /SCIE
89	An FBG-based optical pressure sensor for the measurement of	Preeta Sharan	ECE	Journal of Biophoto nics, Wiley	2024	1864-0648	https://onlinelibrary .wiley.com/journal/ 18640648	https://onlinelibr ary.wiley.com/d oi/abs/10.1002/j bio.202400083	Scopus /SCIE

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	radial artery pulse pressure								
90	Design of optical sensor for cancer prognosis prediction using artificial intelligence	Preeta Sharan	ECE	Journal of Optics, Springer	2024	0974-6900	https://link.springer .com/journal/12596	https://link.sprin ger.com/article/ 10.1007/s12596- 023-01281-z	Scopus
91	Modeling and realization of photonic biosensor for hazardous virus detection using ML approach	Preeta Sharan	ECE	Journal of Optics, Springer	2024	0974-6900	https://link.springer .com/journal/12596	https://link.sprin ger.com/article/ 10.1007/s12596- 023-01643-7	Scopus
92	A Two-Stage Detection Methodology for Thyroid Cancer Using Photonic Crystal: Logistic Regression and Artificial Neural Networks	Preeta Sharan	ECE	Optik,	2024	0030-4026	https://www.scienc edirect.com/journal /optik	https://www.scie ncedirect.com/sc ience/article/abs/ pii/S003040262 4005473	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

93	Computer-aided analysis of tapered roller bearings for rail transport system	Preeta Sharan	ECE	Internati onal Journal of Informati on Technolo gy, Springer	2024	2511-2112	https://link.springer .com/journal/41870	https://link.sprin ger.com/article/ 10.1007/s41870- 023-01645-5	Scopus
94	Investigation on FBG based optical sensor for pressure and temperature measurement in civil application	Preeta Sharan	ECE	Optoelec tronics Letters	2024	1673-190	https://doi.org/10.1 007/s11801-024- 3190-6	https://link.sprin ger.com/article/ 10.1007/s11801- 024-3190-6	Scopus
95	A survey of soft computing approaches in biomedical imaging	Dr Manju Devi	ECE	Journal of Healthca re Engineer in	2024	2040-2309	https://onlinelibrary .wiley.com/journal/ 7158	https://onlinelibr ary.wiley.com/d oi/full/10.1155/2 021/1563844	Scopus
96	Highly sensitive lab-on-chip with deep learning AI	Dr Manju Devi	ECE	Internati onal Journal of	2024	2511- 2104	https://link.springer .com/journal/41870	https://link.sprin ger.com/article/ 10.1007/s41870- 019-00363-1	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	for detection of bacteria in water			Informati on Technolo gy					
97	Evaluating Puncture and Non- puncture for the Turbo Code Model based the on AWGN Channel with 16-QAM	Dr Manju Devi	ECE	IET Journal of Research	2024	0377-2063	https://www.tandfo nline.com/journals/ tijr20	https://doi.org/1 0.1080/0377206 3.2024.2305835	SCI
98	Comparison of Face Recognition Using PCLDA and Neural Network	Dr.V.Vij aya Kumari	ELect ronics and Com munic ation	Advance s and challeng es in science and technolo gy	2023	Vol. 9, 30 November 2023 , Page 139- 152	https://www.bookp i.org/bookstore/pro duct/advances-and- challenges-in- science-and- technology-vol-1/	https://doi.org/1 0.9734/bpi/acst/ v9/6966C	Google Scholar
99	Implementation of Wireless Quick Response Code Using MCU ESP8266	Dr.V.Vij aya Kumari	ECE	Technisc he Sicherhei t	2024	1434-9728	https://technikwisse n.eu/	https://drive.goo gle.com/file/d/1 wXdcuCY5_AQ af4Ho- j8XUGwF2SHL H3Va/view	UGC

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

100	IR Wireless Underwater Communication System: A Survey of Underwater Wireless Sensor Networks	Dr.V.Vij aya Kumari	ECE	IJRAR	2024	2348-1269	https://ijrar.org/?ga d_source=1&gclid =CjwKCAjw59q2 BhBOEiwAKc0ijf UNJx85YxBuWBF GQTHAY_IWDTv JsKtdXnoUXfGgk DMhE8lwZ8iSlho	https://ijrar.org/ viewfull.php?& p_id=IJRAR24 B2744	UGC
101	Survey on Timing Error Detection and Correction Methods for Fir Filter Applications(book chapter)	Dr.V.Vij aya Kumari	ECE	Theory and Applicati ons of Engineer ing Research ,BP Internati onal	2024	ISBN: 978-81- 971580-5- 6	<u>C7WYQAvD_Bw</u> <u>E</u> <u>https://www.bookp</u> <u>i.org/</u>	https://stm.book pi.org/TAER- V8/article/view/ 13789	Google Scholar
102	Control Of Switched Reluctance Motor And Noise Reduction Using	Dr.B.Sril atha	ECE	IJEM	2024	2305-3631	https://www.mecs- press.org/ijem/v14 n3.html	https://doi.org/1 0.5815/ijem.202 4.03.04	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

	Fuzzy Controller In								
	Matlab/Simulink								
103	Advanced Neural	Jayaraj N	ECE	IEEE	2024		https://ieeexplore.ie	https://ieeexplor	Google
	Network			xplore		ISBN:978-	ee.org/xpl/conhom	e.ieee.org/docu	Scholar
	Approaches for					93-80544-	<u>e/1803740/all-</u>	ment/10499002	
	Distinguishing					51-9	proceedings		
	Real from								
	Synthetic in GAN-								
	generated Data								
	Authenticity								
	Challenges								
104	Control Of	Sheeba	ECE	IJEM	2024	2305-3631	https://www.mecs-	https://doi.org/1	Scopus
	Switched	Kumari					press.org/ijem/v14	0.5815/ijem.202	
	Reluctance Motor	С					<u>n3.html</u>	<u>4.03.04</u>	
	And Noise								
	Reduction Using								
	Fuzzy Controller In								
	Matlab/Simulink								
105	Measurement	Preeta	ECE	Journal	2024	2040-8986	https://link.springer	https://link.sprin	Scopus
	model of integrated	Sharan		of Optics			.com/journal/12596	ger.com/article/	
	FBG sensor for							<u>10.1007/s12596-</u>	
	beam structure							<u>023-01441-1</u>	
106	Real-time	Preeta	ECE	Journal	2024	2040-8986	https://link.springer	https://link.sprin	Scopus
	implementation of	Sharan		of Optics			.com/journal/12596	ger.com/article/	
	optical sensor on								

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	lab rig model for speed estimation							<u>10.1007/s12596-</u> 023-01431-3	
107	An investigation of stress and temperature analysis at the rail- wheel contact using an optical simulation study	Preeta Sharan	ECE	IEEE Explorer	2024	2473-2001	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/abstra ct/document/106 77308	Scopus
108	Investigation on FBG based optical sensor for pressure and temperature measurement in civil application	Preeta Sharan	ECE	Optoelec tronics Letters	2024	1993-5013	https://link.springer .com/journal/11801	https://link.sprin ger.com/article/ 10.1007/s11801- 024-3190-6	Scopus
109	A comprehensive review of using optical fibre interferometry for intrusion detection with artificial intelligence technique	Preeta Sharan	ECE	Journal of Optics	2024	1993-5013	https://link.springer .com/journal/12596	https://rdcu.be/d 2uaH	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

110	Highly sensitive one-dimensional Dielectric- Superconductor photonic crystal structure for low temperature sensing	Preeta Sharan	ECE	Cryogeni cs	2024	0011-2275	https://www.scienc edirect.com/journal /cryogenics	https://www.scie ncedirect.com/sc ience/article/abs/ pii/S001122752 4001541	SCI
111	applications Med-Tech Device Security Through Advanced Server Cryptography"	Preeta Sharan	ECE	Internati onal Journal of Informati on Technolo gy	2024	2511- 2104	https://link.springer .com/journal/41870	https://link.sprin ger.com/journal/ 41870	Scopus
112	Control Of Switched Reluctance Motor And Noise Reduction Using Fuzzy Controller In Matlab/Simulink	Tina Elizabeth Thomas	ECE	IJEM	2024	2305-3631	https://www.mecs- press.org/ijem/v14 n3.html	https://doi.org/1 0.5815/ijem.202 4.03.04	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

113	Harris Hawks	Dr Nisha	EEE	Measure	2024	26659174	https://www.scienc	https://www.scie	Scopus
	Optimization	C Rani		ment:			edirect.com/journal	ncedirect.com/sc	1
	Algorithm for			Sensors,			/measurement-	ience/article/pii/	
	reducing THD			Volume			sensors	S266591742400	
	using ZVT-ZCT-			32,				0436	
	based QRCC: A			id.10106					
	comparative			7,					
	approach			Elsevier					
114	Oxidation	Dr	ME	Surface	2024	1793-6667	https://www.worlds	https://ideas.rep	Scopus
	Characteristics Of	Raviprak		Review			cientific.com/world	ec.org/a/wsi/srlx	
	Thermal-Sprayed	ash M		and			scinet/srl?srsltid=A	xx/v31y2024i11	
	Cobalt-Based			Letters			fmBOooU3he_dD1	ns0218625x243	
	Superalloy						gSRu_0KSnRtK_F	<u>00119.html</u>	
	Coatings: A						7Jic9p9X_mfgPKs		
	Review						<u>7sbr_7MkpQXv</u>		
115	Elevated	Dr.	ME	Journal	2024	2250-2122	https://link.springer	https://link.sprin	Scopus
	Temperature Stress	Varun K		of The			.com/journal/40033	ger.com/article/	
	Analysis of Cobalt-	R		Institutio				<u>10.1007/s40033-</u>	
	Based Composite			n of				<u>024-00691-y</u>	
	Cladding by			Engineer					
	Microwave Process			s (India):					
	on Gas Turbine			Series D					
	Rotor Blade Using								
	FEA								

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

116	Investigation of Mechanical and Metallurgical Properties of Friction Welded Joints for Dissimilar Metals (HSS M2 and EN8 Steel)	Dr. Varun K R	ME	Journal of The Institutio n of Engineer s (India): Series D	2024	2250-2122	https://link.springer .com/journal/40033	https://link.sprin ger.com/article/ 10.1007/s40033- 024-00658-z	Scopus
117	Optimization of Processing Parameters and Wear Performance of B4C Reinforced AA6061 Composites Through Taguchi Methodology	Dr. Varun K R	ME	Journal of The Institutio n of Engineer s (India): Series D	2024	2250-2122	https://link.springer .com/journal/40033	https://link.sprin ger.com/article/ 10.1007/s40033- 024-00792-8	Scopus
118	Characterization of Ti-31 Alloy Coated with WC–Co/Cr by HVOF Technique	Dr. Madhu Sudana Reddy G	ME	Recent Advance s in Materials and Manufac turing	2024	978-981- 97-3654-6	https://link.springer .com/book/10.1007 /978-981-97-3654- 6	https://link.sprin ger.com/chapter/ 10.1007/978- 981-97-3654- 6_13#citeas	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

119	Characterization of Ti-31 Alloy Coated with WC–Co/Cr by HVOF Technique	Dr Raju B R	ME	Recent Advance s in Materials and Manufac turing	2024	978-981- 97-3654-6	https://link.springer .com/book/10.1007 /978-981-97-3654- 6	https://link.sprin ger.com/chapter/ 10.1007/978- 981-97-3654- 6_13#citeas	Scopus
120	Design and analysis of a fiber Bragg grating- based foot pressure assessment system	Anup M Upadhya ya	ME	Journal of Biophoto nics, Wiley	2024	1864-0648	https://onlinelibrary .wiley.com/journal/ 18640648	https://onlinelibr ary.wiley.com/d oi/abs/10.1002/j bio.202400070	Scopus /SCIE
121	Integrating Photonics and Fiber Bragg Grating Sensors with Deep Reinforcement Learning for Advanced Robotic Systems	Dr.Manj ula C	MTE	SCOPUS	2024	979-8- 3503- 9450-4	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/abstra ct/document/104 98916	SCOPUS
122	Integrating Photonics and Fiber Bragg Grating Sensors	Mr. Jaideep R	MTE	SCOPUS	2024	979-8- 3503- 9450-4	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/abstra ct/document/104 98916	SCOPUS

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

(Recognized by the Govt. of Karnataka, Affiliated to Visvesvaraya Technological University, Belagavi, Approved by A.I.C.T.E. New Delhi & Recognized by UGC Under Section 2(f), Accredited by NBA, New Delhi, NAAC 'A' Grade with score of 3.24 & Diamond Rating by QS I Guage) Bommanahalli, Hosur Road, Bangalore –560 068. ©: 080 -61754601/602 E-mail: engprincipal@theoxford.edu Web: www.theoxfordengg.org

	with Deep Reinforcement	· · ·							
	Learning for								
	Advanced Robotic								
	Systems								
123	Integrating	Ms.Seem	MTE	SCOPUS	2024	979-8-	https://ieeexplore.ie	https://ieeexplor	SCOPUS
	Photonics and	a V				3503-	ee.org/Xplore/hom	e.ieee.org/abstra	
	Fiber Bragg					9450-4	<u>e.jsp</u>	ct/document/104	
	Grating Sensors							<u>98916</u>	
	with Deep								
	Reinforcement								
	Learning for								
	Advanced Robotic								
	Systems								
124	Integrating	SUBAR	AIML	IEEE	2024	2473-2001	https://ieeexplore.ie	https://ieeexplor	Scopus
	Photonics and	ANJINI		EXPLO			ee.org/document/1	e.ieee.org/docu	
	Fiber Bragg	Т		RER			<u>0498916</u>	ment/10498916	
	Grating Sensors								
	with Deep								
	Reinforcement								
	Learning for								
	Advanced Robotic								
	Systems								

ाद्या सर्वत्र शोभते Estd. 1974

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

125	Enhancing E- commerce Fashion Sales through Personalized Recommendation Systems	SUBAR ANJINI T	AIML	IEEE EXPLO RER	2024	2473-2001	https://ieeexplore.ie ee.org/document/1 0498171	https://ieeexplor e.ieee.org/docu ment/10498171	Scopus
126	Advanced Neural Network Approaches for Distinguishing Real from Synthetic in GAN- generated Data Authenticity Challenges	SUBAR ANJINI T	AIML	IEEE EXPLO RER	2024	2473-2001	https://ieeexplore.ie ee.org/document/1 0499002	https://ieeexplor e.ieee.org/docu ment/10499002	Scopus
127	A Hybrid Deep Learning Approach for Accurate and Transparent Maize Plant Disease Classification	Dr P Bindhu madhavi	AIML	IEEE EXPLO RER	2024	978-93- 80544-51- 9	https://ieeexplore.ie ee.org/Xplore/hom e.jsp	https://ieeexplor e.ieee.org/docu ment/10498754	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

128	Homology Modeling and DockingInvestigati ons of Polyglutamine (PolyQ) and Non- PolyQ Peptides for the Treatment of Huntingtin's Disease.	K.Valar mathy,In dulekha John	BT	African Journal of Biologic al Sciences	2024	2663-2187	https://www.afjbs.c om/	https://afjbs.com /issue- content/homolog y-modeling-and- dockinginvestig ations-of- polyglutamine- polyq-and-non- polyq-peptides- for-the- treatment-of-	SCOPUS
129	AN EFFICIENT HYBRID FILTERING APPROACH TO IMPROVE THE QUALITY OF MEDICAL IMAGES	K Valarmat hy	BT	African Journal of Biologic al Sciences	2024	2663-2187	https://www.afjbs.c om/	huntingtin-s- disease-355 https://www.afjb s.com/issue- content/an- efficient-hybrid- filtering- approach-to- improve-the- quality-of- medical-images- 2836	SCOPUS

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

130	Spectroscopic and non-spectroscopic analysis of Fe- substituted BaSO4 nanoparticles by chemical	P. Soundhir arajan,	Physi cs	Journal Mater Sci: Mater Electron	2024	1573- 482X	https://link.springer .com/journal/10854	https://link.sprin ger.com/article/ 10.1007/s10854- 024-13092-4	Scopus /SCIE
	precipitation method								
131	Hydrothermal Synthesis of Mn2P2O7 Nanostructures and Their Elctrochemical Behavior in Organic Electrolyte,	P. Soundhir arajan,	Physi cs	Internati onal Journal of Nanoscie nce.	2024	1793- 7094	https://doi.org/10.1 142/S0219581X23 500850.	https://doi.org/1 0.1142/S021958 1X23500850	Scopus /SCIE
132	Hydrothermal Approach of Spinel Copper Cobaltite (CuCo2O4) Nanostructures and Their Structural and	Dr. P. Soundhir arajan	Physi cs	NANO: Brief Reports and Reviews	2024	2666-9781	https://www.worlds cientific.com/world scinet/nano	https://doi.org/1 0.1142/S179329 2024501583	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

	Functional Properties								
133	Functionalized conducting polymer nanocomposites for EMI shielding applications.	Dr.Abdul Kaar C.H.	Physi cs	Woodhe ad Publishin g Series in Composi tes Science and Engineer ing	2024	2073-4360	https://www.scienc edirect.com/book/9 780443188602/adv ances-in- functionalized- polymer- nanocomposites	https://www.scie ncedirect.com/sc ience/article/abs/ pii/B978044318 8602000244	Scopus
134	Detection of intraerythrocytic stages of malaria parasite using one- dimensional Bragg mirror optical sensor	H.N. Gayathri	chemi stry	Journal of Optics	2024	0974-6900	https://link.springer .com/journal/12596	https://link.sprin ger.com/article/ 10.1007/s12596- 024-01669-5	Scopus
135	Synthesis, characterization, and	Usha Jinendra	chemi stry	Journal of Molecula	2024	0022-2860	https://www.scienc edirect.com/journal	https://doi.org/1 0.1016/j.molstru c.2024.137701	Google Scholar

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

									I
	photoluminescence			r			<u>/journal-of-</u>		
	investigations of			Structure			molecular-structure		
	Al/ Co-doped ZnO								
	nanopowder								
136	Investigations of	Usha	chemi	HELIYO	2024	2405-8440	https://www.scienc	https://www.scie	Google
	Adsorption and	Jinendra	stry	Ν			edirect.com/journal	ncedirect.com/sc	Scholar
	Photoluminescence						/heliyon	ience/article/pii/	
	Properties of							<u>S240584402410</u>	
	Encapsulated							4586	
	Al_x0002_ZnO								
	Nanostructures:								
	Synthesis,								
	Morphology and								
	Dye Degrada								
137	Multiresidue	Usha	chemi	Food	2024	2304-8158	https://link.springer	https://link.sprin	Google
	Pesticide Analysis	Jinendra	stry	Analytic			.com/journal/12161	ger.com/article/	Scholar
	in Onion Using		5	al				10.1007/s12161-	
	GC-MS/MS Using			Methods				024-02598-6	
	Modified								
	QuEChERS								
	Method with								
	Zirconium Oxide								
	Nanoparticle								

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

138	Evaluation of	Usha	chemi	Current	2024	2666-0865	https://www.scienc	https://www.scie	Google
	antioxidant and	Jinendra	stry	Research			edirect.com/journal	ncedirect.com/sc	Scholar
	antibacterial			in Green			/current-research-	ience/article/pii/	
	activities of silver			and			in-green-and-	<u>S266608652400</u>	
	nanoparticles			Sustaina			sustainable-	0043	
	derived from			ble			chemistry		
	Limonia acidissima			Chemistr					
	fruit extract			У					
139	Comprehensive	Dr C	Chem	Proceedi	2024	2662-3161	https://link.springer	https://link.sprin	Scopus
	Review on Eco-	Shanmug	istry	ngs of			.com/book/10.1007	ger.com/chapter/	
	Friendly Fillers	a Sundari	(S&H	the			/978-981-97-7071-	<u>10.1007/978-</u>	
	2012–2023: A)	Internati			<u>7</u>	<u>981-97-7071-</u>	
	Potential Resource			onal				<u>7_31</u>	
	for Polymer			Conferen					
	Composites			ce on					
				Eco-					
				friendly					
				Fibers					
				and					
				Polymeri					
				c					
				Materials					

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

140	Rice Husk Ash based Sodium Silicate as the Alkali Activator in slag based Geopolymer Concrete	usha Jinendra	chemi stry	E3S Web	2024	2267-1242	https://www.e3s- conferences.org/	https://www.e3s conferences.org/ articles/e3sconf/ abs/2024/89/e3s conf_icstce2024 _04003/e3sconf	Google Scholar
141	The Status Gourava Indices of Middle Graphs of Some Standard Graphs	Selastina Mary	Mathe matics	Annals of Pure and Applied Mathema tics	2024	2279- 087X	http://www.researc hmathsci.org/APA MEditorial.html	<u>icstce2024_040</u> 03.html http://www.rese archmathsci.org/ apamart/APAM- v29n1-5.pdf	Google Scholar
142	M polynomial and Topological indices of derived graphs of Ladder graph	Moumita Chatterje e	Mathe matics	Annals of Pure and Applied Mathema tics	2024	2279- 087X	www.researchmath sci.org	https://www.res earchgate.net/pu blication/378040 312_M- Polynomial_and _Topological_In dices_of_Derive d_Graphs_of_La dder_Graph	Google Scholar

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

143	Viscoelastic effect on the triple diffusive oscillatory flow in a fluid-saturated porous layer	Pallavi G	Mathe matics	Modern Physics Letters B	2024	0217-9849	https://doi.org/10.1 142/S02179849245 00982	https://doi.org/1 0.1142/S021798 4924500982	Web of Science
144	Accurate Degree Domination Number of a Graph	Moumita Chatterje e	Mathe matics	Internati onal Journal of Mathema tics Trends and Technolo gy	2024	2231-5373	<u>https://ijmttjournal.</u> org	https://doi.org/1 0.14445/223153 73/IJMTT- V70I5P102	Google Scholar
145	Simulation of Hemoglobin and Oxyhemoglobin Dynamics using a Robust Computational Technique	GAYAT HRI C	Mathe matics	Commun ications on Applied Nonlinea r Analysis	2024	1074- 133X	https://scopus.com/ sourceid/11100153 313	https://doi.org/1 0.52783/cana.v3 1.579	Scopus

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

146	Balancing Work & Life To Reduce Doctors Stress	Dr. K THARK A RAMI REDDY	MBA	Internati onal Journal of Scientifi c Research in Engineer ing and Manage	2024	2582-3930	https://ijsrem.com/	https://ijsrem.co m/download/bal ancing-work- life-to-reduce- doctors-stress/	Google Scholar
147	A Comparative Study of BSE Listed Sectoral Indices of Real Estate and Banking Industry	Dr V Lakshmi Suneetha	MBA	ment (IJSREM) Internati onal Journal of Manage ment, Technolo gy and Social Sciences	2024	2581- 6942.	https://papers.ssrn.c om/sol3/papers.cfm ?abstract_id=47699 76	https://papers.ssr n.com/sol3/pape rs.cfm?abstract_ id=4769976	Google Scholar

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

				(IJMTS					
148	A Study on Effect of Job Satisfaction, Stress and Emotional Intelligence on Job Performance among HEI Faculty Members	Dr Sahana A & Dr V Lakshmi Suneetha	MBA	Proceedi ngs of the 3rd Internati onal Conferen ce on Reinvent ing Business Practices , Start- ups and Sustaina bility (ICRBSS 2023)	2024	2352-5428	https://www.atlanti <u>s-</u> press.com/proceedi ngs/icrbss- 23/125998438	https://www.atla ntis- press.com/proce edings/icrbss- 23/125998438	Google Scholar
149	A Sectoral Analysis of BSE- Listed Indian Pharma Companies	Dr V Lakshmi Suneetha	MBA	Internati onal Journal of Case	2024	2581-6942	https://www.supubl ication.com/index.p hp/ijcsbe/article/vie w/1152	https://www.sup ublication.com/i ndex.php/ijcsbe/	Google Scholar

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

				Studies in Business, IT and Educatio n				article/view/115 2	
150	A Financial Performance Analysis of Indian Oil Exploration & Drilling Sector	Dr V Lakshmi Suneetha	MBA	Internati onal Journal of Applied Engineer ing and Manage ment Letters	2024	2581-7000	https://supublicatio n.com/index.php/ij aeml/article/view/1 163	https://supublica tion.com/index.p hp/ijaeml/article /view/1163	Google Scholar
151	Quantitative ABCD Analysis: Indian Household and Personal Care Sector	Dr V Lakshmi Suneetha	MBA	Internati onal Journal of Case Studies in Business, IT and	2024	2581-6942	https://www.supubl ication.com/index.p hp/ijcsbe/article/vie w/1195	https://www.sup ublication.com/i ndex.php/ijcsbe/ article/view/119 5	Google Scholar

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

				Educatio n					
152	Unlocking Potential in the Chemical Industry Sector: An Innovative SWOT Analysis Study	Dr V Lakshmi Suneetha	MBA	Internati onal Journal of Case Studies in Business, IT and Educatio n	2024	2581-6942	https://supublicatio n.com/index.php/ij csbe/article/view/1 208	https://supublica tion.com/index.p hp/ijcsbe/article/ view/1208	Google Scholar
153	Revving Up or Stalling Out? A Comprehensive SWOC Analysis of BSE listed India's Auto Sector	Dr V Lakshmi Suneetha	MBA	Internati onal Journal of Manage ment, Technolo gy and Social Sciences	2024	2581- 6012	https://supublicatio n.com/index.php/ij mts/index	https://supublica tion.com/index.p hp/ijmts/article/ view/1222	Google Scholar

Administrative Office:

1st Phase, JP Nagar, Bengaluru – 560 078 D: 080-61754501 – 502 Fax: 080-2654 8658

THE OXFORD COLLEGE OF ENGINEERING

154	FBG Sensor	Mary	MCA	IEEE	2024	1803-7232	https://ieeexplore.ie	https://ieeexplor	Scopus
	Design and	Anitha T					ee.org/xpl/conhom	e.ieee.org/docu	
	Analytics for Early						e/10498128/procee	ment/10498873	
	Detection of						ding		
	Cancer								
155	Diabetes Mellitus	J	CSE	IEEE	2024		https://ieeexplore.ie	https://ieeexplor	Scopus
	Diagnosis using	Jesy Jane		Exlorer			ee.org/xpl/conhom	e.ieee.org/docu	
	Optical Ring	t Kumari					e/10498128/procee	ment/10498293	
	Resonators						ding		

12/7/24, 4:17 PM IoT based Innovative Teaching Learning using Smart Class Rooms | IEEE Conference Publication | IEEE Xplore IEEE.org IEEE Xplore IEEE SA IEEE Spectrum More Sites Subscribe Donate Cart Create Account Personal Sign In -)] Browse ✓ My Settings ✓ Help ✓ Institutional Sign In Institutional Sign In All Q ADVANCED SEARCH Conferences > 2023 International Conference... 2 IoT based Innovative Teaching Learning using Smart Class Rooms **Publisher: IEEE** 🏓 PDF **Cite This** M Ashwin.; E Saravana Kumar; R Ch A Naidu; Raghu Ramamoorthy All Authors ••• 2 95 Alerts Cites in Full Papers **Text Views** Manage Content Alerts Add to Citation Alerts Abstract ۲ Down **Document Sections** PDF I. Introduction Abstract: II. Literature Review Nowadays students are expected to learn the subject easily through IoT based innovative teaching learning process. The innovative teaching learning process is achieved th... View more III. Materials and Methods

Metadata

Abstract:

Nowadays students are expected to learn the subject easily through IoT based innovative teaching learning process. The innovative teaching learning process is achieved through smart class rooms. The smart class room is a classroom which fortified with hypermedia apparatuses aimed to improve teaching and knowledge. The main objective of smart class room is to create improved education and thoughtful through which the students can study their modules in smart method. The smart class room equipped with computers, LCD projectors, Laptops, DVD player, Video Cassette Recorder (VCR), Laptop cart (Podium), White board, Microphones etc. The smart class room standards like interactive white board, smart acoustic, senteo collaborating reply structure, airliner digital tab, smooth manuscript camera which makes the class room as digital class rooms.

Published in: 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS)

More Like This
Date of Conference: 23-25 March 2023
Date Added to IEEE Xplore: 25 April 2023

ISBN Information:

Conference Location: Erode, India

Publisher: IEEE

Location: Erod

DOI: 10.1109/ICSCDS56580.2023.10104589

IV. Conclusion

Authors

Figures

References

Citations

Keywords

Metrics

PDF

Help

SPRINGER NATURE Link

Q Search

Login

📃 Menu

Cart

Home SN Computer Science Article

Classification of COVID-19 with Belief Functions and Deep Neural Network

Original Research Published: 23 January 2023

Volume 4, article number 178, (2023) Cite this article

Download PDF ±

SN Computer Science

Aims and scope

Submit manuscript

E. Saravana Kumar, P. Ramkumar, H. S. Naveen, Raghu Ramamoorthy & R. Ch. A. Naidu

▶ 1319 Accesses **↓** 3 Citations Explore all metrics \rightarrow

Abstract

At present, the entire world has suffered a lot due to the spike of COVID disease. Despite the world has been developed with so much of technology in the domain of medicine, this is a very huge challenge in all over the world. Though, there is a rapid development in medical field, those are not even sufficient to diagnose the symptoms of this COVID in earlier stage. Since the spread of this disease in all over the world, it affects the livelihood of the human. Computed Tomography (CT) images have given necessary data for the radio diagnostics to detect the COVID cases. Therefore, this paper addressed about the classification techniques

$\textbf{SPRINGERNATURE}\ Link$

Log in

💭 Cart

Q Search

Home SN Computer Science Article

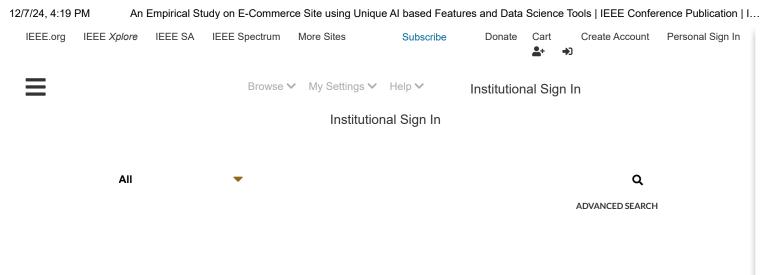
Reliable and Accurate Plant Leaf Disease Detection with Treatment Suggestions Using Enhanced Deep Learning Techniques

Original Research Published: 11 January 2023

Volume 4, article number 158, (2023) Cite this article

SN Computer Science

Aims and scope


Submit manuscript

Raghu Ramamoorthy 🔀, E. Saravana Kumar, R. Ch. A. Naidu & K. Shruthi

5 228 Accesses 3 9 Citations Explore all metrics \rightarrow

Abstract

For agriculture to be sustainable, it is essential to monitor a plant's health and look for diseases. It is quite challenging to manually monitor plant diseases. To improve the plant lifetime, plant disease must be effectively identified. Several diseases cause the plant's leaves to die. In some cases, farmers face issues in finding the type of leaf disease as well as its future symptoms. The proposed plant leaf disease detection scheme uses enhanced deep learning techniques to find causes of leaf disease and offer treatment suggestions. The proposed work relies on Tensor Flow to identify illnesses in plant leaf pictures. The proposed

Conferences > 2023 4th International Confer... ?

An Empirical Study on E-Commerce Site using Unique AI based Features and Data Science Tools

Publisher: IEEE Cite This DDF

J Jesy Janet Kumari; Aniket Singh; R. Ch. A. Naidu; M Sathya; M Ramya Sri All Authors •••

Add to Citation Alerts

Abstract	
Document Sections	
I. Introduction	
II. Related Work	
III. Proposed Work	
IV. Discussion	

V. Conclusion

Authors

Figures

References

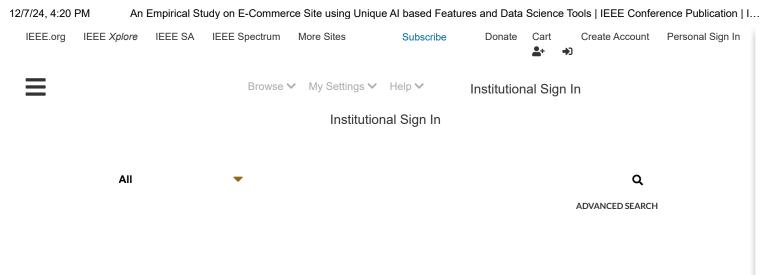
Keywords

Metrics

More Like This

Abstract:

Down


With the advancement of modern-day techniques in the field of Information Technology, the way of shopping through E-Commerce site is becoming outdated. There are two ways... **View more**

Metadata

Abstract:

With the advancement of modern-day techniques in the field of Information Technology, the way of shopping through E-Commerce site is becoming outdated. There are two ways through which an individual can do shopping first is the online method and second is the offline one in today's world online shopping by having more variety of products available on individual platform with easy way of shopping because of this day by day the retailers with offline method are facing challenges to increase their sales and obtaining data of demanding products that are available in the market, now with the growth of artificial intelligence, they can use lot of beneficiary tools to boost their business. If a giant next generation E-Commerce site is made with which we can connect all the wholesalers, retailers and customers with their own point of profits, then it can bring a new revolution in the market where there will be different layers will be available with separate user friendly graphic user interface for all wholesalers, retailers and customers, where they will be allowed to access their own layers accordingly with several unique features and benefits to save time and makin**PDF** shopping more amazing for customers and selling their products and boosting daily sales for the retailers with the influence of top wholesalers available to help them with the unique kind of trading system and daily analytics and ^{Help} progress report using data science.

Published in: 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)

Conferences > 2023 4th International Confer... ?

An Empirical Study on E-Commerce Site using Unique AI based Features and Data Science Tools

Publisher: IEEE Cite This DDF

J Jesy Janet Kumari; Aniket Singh; R. Ch. A. Naidu; M Sathya; M Ramya Sri All Authors •••

Add to Citation Alerts

Abstract	
Document Sections	
I. Introduction	
II. Related Work	
III. Proposed Work	
IV. Discussion	

V. Conclusion

Authors

Figures

References

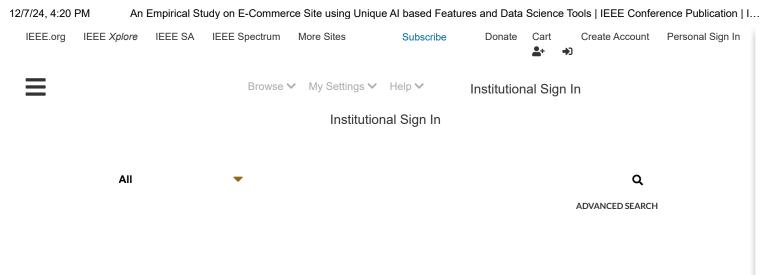
Keywords

Metrics

More Like This

Abstract:

Down


With the advancement of modern-day techniques in the field of Information Technology, the way of shopping through E-Commerce site is becoming outdated. There are two ways... **View more**

Metadata

Abstract:

With the advancement of modern-day techniques in the field of Information Technology, the way of shopping through E-Commerce site is becoming outdated. There are two ways through which an individual can do shopping first is the online method and second is the offline one in today's world online shopping by having more variety of products available on individual platform with easy way of shopping because of this day by day the retailers with offline method are facing challenges to increase their sales and obtaining data of demanding products that are available in the market, now with the growth of artificial intelligence, they can use lot of beneficiary tools to boost their business. If a giant next generation E-Commerce site is made with which we can connect all the wholesalers, retailers and customers with their own point of profits, then it can bring a new revolution in the market where there will be different layers will be available with separate user friendly graphic user interface for all wholesalers, retailers and customers, where they will be allowed to access their own layers accordingly with several unique features and benefits to save time and makin**PDF** shopping more amazing for customers and selling their products and boosting daily sales for the retailers with the influence of top wholesalers available to help them with the unique kind of trading system and daily analytics and Help progress report using data science.

Published in: 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)

Conferences > 2023 4th International Confer... ?

An Empirical Study on E-Commerce Site using Unique AI based Features and Data Science Tools

Publisher: IEEE Cite This DDF

J Jesy Janet Kumari; Aniket Singh; R. Ch. A. Naidu; M Sathya; M Ramya Sri All Authors •••

Add to Citation Alerts

Abstract	
Document Sections	
I. Introduction	
II. Related Work	
III. Proposed Work	
IV. Discussion	

V. Conclusion

Authors

Figures

References

Keywords

Metrics

More Like This

Abstract:

Down

With the advancement of modern-day techniques in the field of Information Technology, the way of shopping through E-Commerce site is becoming outdated. There are two ways... **View more**

Metadata

Abstract:

With the advancement of modern-day techniques in the field of Information Technology, the way of shopping through E-Commerce site is becoming outdated. There are two ways through which an individual can do shopping first is the online method and second is the offline one in today's world online shopping by having more variety of products available on individual platform with easy way of shopping because of this day by day the retailers with offline method are facing challenges to increase their sales and obtaining data of demanding products that are available in the market, now with the growth of artificial intelligence, they can use lot of beneficiary tools to boost their business. If a giant next generation E-Commerce site is made with which we can connect all the wholesalers, retailers and customers with their own point of profits, then it can bring a new revolution in the market where there will be different layers will be available with separate user friendly graphic user interface for all wholesalers, retailers and customers, where they will be allowed to access their own layers accordingly with several unique features and benefits to save time and makin**PDF** shopping more amazing for customers and selling their products and boosting daily sales for the retailers with the influence of top wholesalers available to help them with the unique kind of trading system and daily analytics and Help progress report using data science.

Published in: 2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)

12/7/24, 4:20 PM Prediction of Infant Growth using the Random Forest Algorithm | IEEE Conference Publication | IEEE Xplore IEEE.org IEEE Xplore IEEE SA IEEE Spectrum More Sites Subscribe Donate Cart Create Account Personal Sign In . •) My Settings 🗸 Help 🗸 Browse 🗸 Institutional Sign In Institutional Sign In All Q ADVANCED SEARCH Conferences > 2023 3rd International Confer... ? Prediction of Infant Growth using the Random Forest Algorithm **Publisher: IEEE** 🏓 PDF **Cite This** T. Saravanan; S Saravanakumar; Srinivas Dandu; D Vinotha; Ahmed Karim Kadhim; Haider Al-Chlidi All Authors ••• 1 77 Alerts Full Cites in **Text Views** Paper Manage Content Alerts Add to Citation Alerts Abstract ۲ Down **Document Sections** PDF I. Introduction Abstract: II. Related Work Every parent is curious about their child's internal and exterior development. Childhood is the first stage of a person's existence. To comprehend and better explain many... View more III. Random Forest Algorithm Metadata Abstract: IV. Methodology Every parent is curious about their child's internal and exterior development. Childhood is the first stage of a person's V. Experimental Result existence. To comprehend and better explain many elements of action, including the emotional, physical, social, intellectual, perceptual, and personality development, extensive research has been done in the past. Child Show Full Outline development analysis is a scientific approach to evaluate growth, change, and stability. By learning more about how and why individuals develop and grow, one may better understand and meet a child's needs, allowing them to realize Authors their full potential. Child development has a broad scope and a general purpose. However, just a few studies on early childhood development have been conducted. The project's objective is to use machine learning algorithm to forecast a Figures child's future learning behavior and talents using a random forest algorithm and data-mining approach. References Published in: 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering Citations (ICACITE) PDF Keywords Help Date of Conference: 12-13 May 2023 DOI: 10.1109/ICACITE57410.2023.10182723 Metrics Date Added to IEEE Xplore: 24 July 2023 Publisher: IEEE More Like This Conference Location: Greater Noida, India ISBN Information:

12/7/24, 4:21 PM IoT based Innovative Teaching Learning using Smart Class Rooms | IEEE Conference Publication | IEEE Xplore IEEE.org IEEE Xplore IEEE SA IEEE Spectrum More Sites Subscribe Donate Cart Create Account Personal Sign In -)] Browse 🗸 My Settings 🗸 Help 🗸 Institutional Sign In Institutional Sign In All Q ADVANCED SEARCH Conferences > 2023 International Conference... 2 IoT based Innovative Teaching Learning using Smart Class Rooms **Publisher: IEEE** 🏓 PDF **Cite This** M Ashwin.; E Saravana Kumar; R Ch A Naidu; Raghu Ramamoorthy All Authors ••• 2 95 Alerts Cites in Full Papers **Text Views** Manage Content Alerts Add to Citation Alerts Abstract ۲ Down **Document Sections** PDF I. Introduction Abstract: II. Literature Review Nowadays students are expected to learn the subject easily through IoT based innovative teaching learning process. The innovative teaching learning process is achieved th... View more III. Materials and Methods Metadata IV. Conclusion Abstract:

Nowadays students are expected to learn the subject easily through IoT based innovative teaching learning process. The innovative teaching learning process is achieved through smart class rooms. The smart class room is a classroom which fortified with hypermedia apparatuses aimed to improve teaching and knowledge. The main objective of smart class room is to create improved education and thoughtful through which the students can study their modules in smart method. The smart class room equipped with computers, LCD projectors, Laptops, DVD player, Video Cassette Recorder (VCR), Laptop cart (Podium), White board, Microphones etc. The smart class room standards like interactive white board, smart acoustic, senteo collaborating reply structure, airliner digital tab, smooth manuscript camera which makes the class room as digital class rooms.

Published in: 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS)

	▶ ISBN Information:	Conference Location: Erode, India
More Like This	Date Added to IEEE Xplore: 25 April 2023	Publisher: IEEE
More Like This	Date of Conference: 23-25 March 2023	DOI: 10.1109/ICSCDS56580.2023.10104589
Metrics		

Authors

Figures

References

Citations

Keywords

PDF

Help

SPRINGER NATURE Link

Q Search

Login

📃 Menu

戸 Cart

Home SN Computer Science Article

Classification of COVID-19 with Belief Functions and Deep Neural Network

Original Research Published: 23 January 2023

Volume 4, article number 178, (2023) Cite this article

Download PDF 坐

SN Computer Science

Aims and scope

Submit manuscript

E. Saravana Kumar, P. Ramkumar, H. S. Naveen, Raghu Ramamoorthy & R. Ch. A. Naidu

▶ 1319 Accesses **↓** 3 Citations Explore all metrics \rightarrow

Abstract

At present, the entire world has suffered a lot due to the spike of COVID disease. Despite the world has been developed with so much of technology in the domain of medicine, this is a very huge challenge in all over the world. Though, there is a rapid development in medical field, those are not even sufficient to diagnose the symptoms of this COVID in earlier stage. Since the spread of this disease in all over the world, it affects the livelihood of the human. Computed Tomography (CT) images have given necessary data for the radio diagnostics to detect the COVID cases. Therefore, this paper addressed about the classification techniques

$\textbf{SPRINGERNATURE}\ Link$

Login

💭 Cart

Ξ Menu

Q Search

Home SN Computer Science Article

Reliable and Accurate Plant Leaf Disease Detection with Treatment Suggestions Using Enhanced Deep Learning Techniques

Original Research Published: 11 January 2023

Volume 4, article number 158, (2023) Cite this article

SN Computer Science

Aims and scope

Submit manuscript

Raghu Ramamoorthy 🖂, E. Saravana Kumar, R. Ch. A. Naidu & K. Shruthi

5 228 Accesses 3 9 Citations Explore all metrics \rightarrow

Abstract

For agriculture to be sustainable, it is essential to monitor a plant's health and look for diseases. It is quite challenging to manually monitor plant diseases. To improve the plant lifetime, plant disease must be effectively identified. Several diseases cause the plant's leaves to die. In some cases, farmers face issues in finding the type of leaf disease as well as its future symptoms. The proposed plant leaf disease detection scheme uses enhanced deep learning techniques to find causes of leaf disease and offer treatment suggestions. The proposed work relies on Tensor Flow to identify illnesses in plant leaf pictures. The proposed

SPRINGER NATURE Link

∃ Menu C

Q Search

Home SN Computer Science Article

A Comprehensive Study of LB Technique in Cloud Infrastructure

Survey Article Published: 25 January 2023 Volume 4, article number 181, (2023) Cite this article

SN Computer Science

Aims and scope

Submit manuscript

A. Ajil 🖂 & E. Saravana Kumar

b 103 Accesses **c** 2 Citations Explore all metrics \rightarrow

Abstract

In the recent Web-based knowledge transfer, cloud computing is essential. The real world has been changed into a virtual one as a result of the pandemic scenario. Cloud computing plays a major role for storing and computing data using remote computing infrastructure for day-to-day activities. The primary concern in cloud computing is distributing information technology (IT) resources efficiently to record the user requests in a short duration. Load-balancing (LB) techniques distribute the system's load among its various nodes to maximize resource usage and user satisfaction. It identifies the heavy loaded and lightly loaded IT resources and balances the task among the clusters. Load balancing ensures that each node in the network shortens reaction times, utilizes optimal resource and boosts performance. To upgrade the performance metrics in cloud computing (CC), various categories of LB techniques have been developed. This survey evaluates the

. 다 Cart

$\textbf{SPRINGERNATURE}\ Link$

Login

Q Search

🔆 Cart

Home Wireless Personal Communications Article

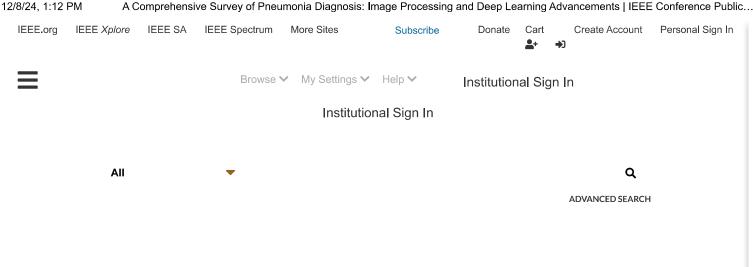
Performance Analysis of Rice Plant Diseases Identification and Classification Methodology

Published: 20 March 2023

Volume 130, pages 1317–1341, (2023) Cite this article

Wireless Personal Communications

Aims and scope


Submit manuscript

<u>M. Tholkapiyan</u> ∑, <u>B. Aruna Devi, Dhowmya Bhatt, E. Saravana Kumar, S. Kirubakaran</u> & <u>Ravi</u> Kumar

667 Accesses Explore all metrics \rightarrow

Abstract

Technological help can be used for improving the cultivation of critical crops for optimal production and quality. Automatic plant disease detection is an interesting study issue as it may be beneficial for the monitoring of vast agricultural fields and thus the automatic identification of disease by the symptoms in the various sections of plants. This work contributes an automated diagnosis of different rice-related diseases utilizing image processing, deep learning, machine learning, and methods for meta-heuristic optimization. These measures include picture dataset size, class numbers, preprocessing procedures, classification approaches, performance analysis, etc. Researches from the previous decade

Conferences > 2023 3rd International Confer... ?

A Comprehensive Survey of Pneumonia Diagnosis: Image Processing and Deep Learning Advancements

Publisher: IEEE Cite This DF

S. Visalini; R. Kanagavalli All Authors •••

Add to Citation Alerts

Abstract

Document Sections

I. Introduction

II. Background

- III. Imaging Modalities
- IV. Image Pre-Processing Techniques
- V. Deep Learning Models In Pneumonia Diagnosis
- Show Full Outline -
 - Authors
 - Figures
 - References
 - Keywords
 - Metrics
 - More Like This

Abstract:

ړ

PDF

Pneumonia is a major global health concern, and early, accurate diagnosis is crucial for effective treatment and better patient outcomes. Recent advances in medical imagi... **View more**

✓ Metadata

Abstract:

Pneumonia is a major global health concern, and early, accurate diagnosis is crucial for effective treatment and better patient outcomes. Recent advances in medical imaging and deep learning have transformed pneumonia diagnosis. This comprehensive survey explores the latest methods and innovations in pneumonia diagnosis, with a focus on image processing and deep learning. It provides background information on pneumonia, its challenges, and the role of medical imaging in improving diagnosis. The survey covers different imaging modalities, such as chest X-rays and CT scans, and discusses image pre-processing techniques, including lung segmentation. It also delves into deep learning models like Convolutional Neural Networks (CNNs) and their application in medical image analysis. The survey categorizes and analyzes research works on various topics related to pneumonia diagnosis, highlighting trends, commonalities, and gaps in existing research. This study offers a comprehensive overview of advancements in pneumonia diagnosis through image processing and deep learning, serving as a valuable resource for researchers, clinicians, and healthcare professionals interested in this field's current status and future directions.

Published in: 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA)

Date of Conference: 21-23 December 2023

DOI: 10.1109/ICIMIA60377.2023.10426403

12/7/24, 4:22 PM Trends and Challenges of Block Chain in Electronic Health Record System | IEEE Conference Publication | IEEE Xplore IEEE.org IEEE Xplore IEEE SA IEEE Spectrum More Sites Subscribe Donate Cart Create Account Personal Sign In -+ •) Browse ✓ My Settings ✓ Help ✓ Institutional Sign In Institutional Sign In All Q ADVANCED SEARCH Conferences > 2023 4th International Confer... ?

Trends and Challenges of Block Chain in Electronic Health Record System

Publisher: IEEE Cite This

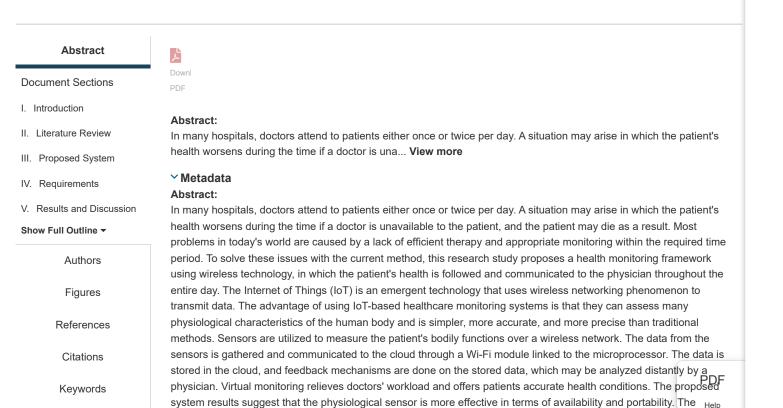
🏓 PDF

C.A. Bindyashree ; Syed Muzamil Basha All Authors •••

128 Full Text Views

Abstract	A A A A A A A A A A A A A A A A A A A
Document Sections	Down! PDF
. Introduction	Abstract:
I. Background of Research	Abstract: The exponential growth in the quantity of digital information is accumulated in electronic health records. Electronic
II. Literature Review	health records are now booming in providing patients View more
V. Conclusion	✓ Metadata Abstract:
Authors	The exponential growth in the quantity of digital information is accumulated in electronic health records. Electronic health records are now booming in providing patients, doctors and health care management in examining the profiles of the second se
Figures	patients and giving proper treatment when emergency. Thus, it has also led to huge impetus on exploiting the EHR to aid clinical decision support systems. The enormous increase of data breach, criminal deception, unjustifiable claiming
References	and thefts in patients' data make difficult for health care systems to provide quality oriented care to patients by contradict it needs an effective authentication mechanisms and secured data storage. Blockchain technology recently
Keywords	have immensely attracting the healthcare industries with its storage methods, distributed and immutability nature of securing the data. There is a growing research body in this direction to develop useful insights for secured EHR. The
Metrics	main objective of the research is to identify various methods, frameworks, regulations and perform an extensive reviev Recent advances in deep learning techniques with blockchain technology have contributed to secure applications usin
More Like This	EHR. Towards this, overview of recent advancements and techniques employed to analyze EHR data securely is introduced. Reviews of the literature discuss the challenges of different approaches. In addition to that effective PDF
	cryptographic authentication mechanisms that aid future research improvements and trigger innovative applications in healthcare will be highly beneficial for deploying an improved block chain security framework.

https://ieeexplore.ieee.org/abstract/document/10276025


¢.

Alerts

Manage Content Alerts Add to Citation Alerts 12/7/24, 4:23 PM Context Monitoring of Patients using Wireless Network | IEEE Conference Publication | IEEE Xplore IEEE.org IEEE Xplore IEEE SA **IEEE Spectrum** More Sites Subscribe Donate Cart Create Account Personal Sign In -)] My Settings 🗸 Help 🗸 Browse 🗸 Institutional Sign In Institutional Sign In All Q ADVANCED SEARCH Conferences > 2023 International Conference... 2 **Context Monitoring of Patients using Wireless Network Publisher: IEEE** 🔎 PDF **Cite This** Vanajaroselin E Chirchi; Chettiyar Vani Vivekanand; N. Vini Antony Grace; R Saranya; S Venkataramana; K. Praveena All Authors ••• 1 38

Cites in Paper

Full Text Views

More Like This Published in: 2023 International Conference on I

Published in: 2023 International Conference on Inventive Computation Technologies (ICICT)

proposed system is easy to use, will save money, and will change how hospitals work in the future.

Metrics

Alerts

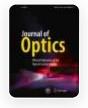
Manage Content Alerts Add to Citation Alerts

SPRINGER NATURE Link

Login

📃 Menu

 Q Search


戸 Cart

Home Journal of Optics Article

Optomechanical behaviour of optical sensor for measurement of Wagon weight at different speeds of the train

Research Article Published: 07 January 2023

Volume 52, pages 751–762, (2023) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Suchandana Mishra, Preeta Sharan 🔀 & K. Saara

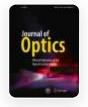
5 177 Accesses (1) 1 Citation Explore all metrics \rightarrow

Abstract

This work includes the design and simulation of optical fiber as strain sensor to measure equivalent elastic strain generated on the rail due to the load of the train wagon at different speeds when train passes over it. It presents a behavioural study of maximum elastic strain and von Mises stress due to wheel-rail contact of a freight train with varying speed from 20 to 80 km/h. It is observed that, a maximum stress of 1016.4 MPa, a strain of 708.8 μ_{e} , and a total deformation of 1.8029 mm, is obtained after experimentation at a constant wagon weight of 57.3 t. At 80 km/h, the shift in Bragg's wavelength is 1559.35 nm. In the first part,

$\textbf{SPRINGERNATURE}\ Link$

Log in


Cart

Q Search

Home Journal of Optics Article

Implementation of digital differentiator and digital integrator using quantum dot cellular automata

Research Article Published: 06 January 2023 Volume 52, pages 1867–1878, (2023) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Preeta Sharan 🖂, Anup M. Upadhyaya & Manpreet Singh Manna

5 192 Accesses 2 Citations Explore all metrics \rightarrow

Abstract

Current CMOS (Complementary metal—oxide—semiconductor) technology is no longer constrained in scaling by short channel effects. The semiconductor industry has developed a number of substitute technologies, including quantum-dot cellular automata, to get around these restrictions (QCA). In this study, a novel technique for developing digital differentiators and integrators is presented, employing QCA Technology as a key component. In order to design the digital differentiator focus has been given on no recursive simple tapped delay line differentiator called first difference differentiator and central

ScienceDirect[®]

Results in Optics

Volume 10, February 2023, 100352

1-Dimensional silicon photonic crystal pressure sensor for the measurement of low pressure

Ranjith B. Gowda ^{a b}, Preeta Sharan ^c $\stackrel{\sim}{\sim}$ $\stackrel{\boxtimes}{\simeq}$, K. Saara ^a

Show more 🗸	
\Xi Outline 🛛 🖏 Share 🍠 Cite	
https://doi.org/10.1016/j.rio.2023.100352 ォ Get rights and content ォ	
Under a Creative Commons license 🛪	open access

Abstract

In this article we proposed a one-dimensional (1D) <u>silicon</u> photonic-crystal (PC) as a highly sensitive pressure sensor to measure the applied hydrostatic pressure. A 1D flexible <u>silicon</u> <u>layer</u> is formed at the top of the proposed structure. The proposed sensor is designed to measure the low pressure in the range of 10kpa to 20kpa. An FEM tool <u>Comsol Multiphysics</u> is used to design, simulate and analyze the structure. A central cavity is created to support the resonant mode and shift in the resonant mode is observed with the varying boundary load. With the variation in the applied pressure from 10kpa to 20kpa, shift in the resonant mode towards higher wavelength region was observed. The defect <u>cavity length</u> and number of layers were tuned to get optimized results. The novelty of this work includes, use of <u>silicon material</u> to sense the applied pressure, design and its simulation to obtain electric field distribution in the multi-layer structure and its analysis for sensing the applied boundary load using an FEM tool. Simulation results shows that the proposed sensor has a

Loading [Math]ax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js 4 with the transmission of 99.99%.

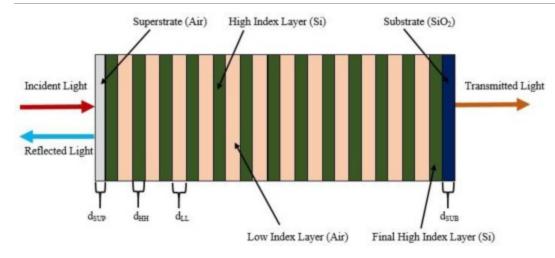
Next

Keywords

Photonic crystal; Pressure sensor; Multi-layer structure; FEM; Transfer matrix

1. Introduction

Low pressure measurement is one of the crucial demand in many industrial and biomedical applications (Pandey and Yadav, 2006, Pinet, 2011, Roriz et al., 2013). In industrial applications, pressure is frequently measured using electromechanical devices. These devices' accuracy for measuring low pressures is extremely minimum, making them less trustworthy. These devices are not appropriate for use in environments with strong EMI, hard operating circumstances, the usage of explosive substances, and high vibrational and temperature conditions. To get around these obstacles, pressure is measured using optical devices, and several kinds of optical sensors have been researched in the literature (Upadhyaya et al., 2021, Olyaee and Dehghani, 2012, Yu et al., 2019). The paradigm guiding the creation of <u>optical sensors</u> is the control of light within the crystal and its interaction with the substance (Joannopoulos et al., 2008). The property of light in PC is also affected by the external parameters like vibrations, pressure, temperature, bio-molecules etc., Photonic crystals (PC) are the materials having periodic variation in the dielectric constant in certain directions. PC's can be one, two or three dimensional structures based on their dielectric variation respectively in one, two or in three directions. Photonic band gap (PBG) is the paramount property of the PC which contains the range of frequencies prohibiting from propagation through PC. High accuracy, no EMI, light weight, reduced size, minimum sample requirement and ease of integration with the other devices are the major advantages of PC to consider them for sensing applications. Because of the advanced micromachining techniques, PC based sensor occupies large application areas viz, bio-sensors (Inan et al., 2017, Konopsky et al., 2013), pressure sensors (Upadhyaya et al., 2021, Olyaee and Dehghani, 2012), force sensors (Yang et al., 2014), vibration sensors (Yu et al., 2019), temperature sensors (Wu et al., 2018), energy and civil engineering applications (Pinet et al., 2007, Pinet et al., 2010) and so on. The new application areas like Communication and quantum computing devices are also possible with the photonic crystals (Sharma et al.,


Magnetic field, temperature, pressure and other external parameters influences the dielectric constant of a PC (Porras-Montenegro and Duque, 2010, Xu et al., 2003, González and Porras-Montenegro, 2012, Herrera et al., 2018). Light propagation property and hence PBG of the material changes with these external physical parameters. These external physical quantities can be measured by observing propagation of light through PC structures. Proposed work describes the design and analysis of 1D PC for low pressure measurement (in the range of kpa). Researchers investigated a lot of PC based pressure sensors and they can be found in the literature (Upadhyaya et al., 2021, Olyaee and Dehghani, 2012, Vijaya Shanthi and Robinson, 2014). The effect of applied hydrostatic pressure on the PBG of photonic crystals is discussed in detail in the Refs. (Porras-Montenegro and Duque, 2010, Herrera et al., 2018, Segovia-Chaves and Vinck-Posada, 2018). External pressure influence on the forbidden frequencies was discussed by F. Segovia et al. (Segovia-Chaves and Vinck-Posada, 2018). Dielectric permittivity of the material changes with the applied pressure and which intern affects the PBG (Samara, 1983) of a PC. Among different type of photonic crystal sensors, 1D PC's are the best choice as they have simple structure, easy modelling, analysis and fabrication process as compared to 2D and 3D structures.

2. Mathematical modelling

Theoretical modelling of 1D PC structures can be done by using <u>Transfer Matrix Method</u> (TMM). In 1D PC, the <u>dielectric</u> variation is in one direction and has fixed number of layers called period (N). In the proposed PC structure, a flexible <u>silicon layer</u> on the top acts as a pressure sensing layer. Two dimensional top view of flexible sensing layer is as shown in Fig. 1. The first layer is a superstrate (air), followed by alternate regions of high index (HH) layer (silicon) and low index (LL) layer (air) and then final high index layer (SiO₂). It is represented as [Superstrate/(HH/LL)^N/HH/Substrate]. The thickness of these layers is equal to <u>quarter wavelength</u> of the input light and are denoted as d_{sup}, d_{HH}, d_{LL} and d_{sub} respectively for superstrate, high-index layer, low-index layer and substrate which have corresponding refractive-index (RI) of n_{sup}, n_{HH}, n_{LL} and n_{sub}. Each layer can be represented mathematically using transfer matrix as (Singh et al., 2014, Aly and Zaky, 2019, Zhao et al., 2017, Society, 2017, Yeh et al., 1976, Steen, 1999, Gowda et al., 2021, Gowda et al., 2022, Gowda et al., 2021)

$$M_{j} = \frac{\cos(\beta_{j})}{-ip_{j}\sin(\beta_{j})\cos(\beta_{j})} = \frac{M_{11}M_{12}}{M_{21}M_{22}}$$

1-Dimensional silicon photonic crystal pressure sensor for the measurement of low pressure - ScienceDirect

Download: Download high-res image (150KB) Download: Download full-size image

Fig. 1. Two dimensional top view of the proposed flexible silicon layer.

Which represents the phase variation of the propagating light wave in the jth layer.

 $p_j = n_j cos(\theta_j)$ for TE mode and $p_j = \frac{cos(\theta_j)}{n_j}$ for TM mode with θ being the incidence angle at the interface boundary of each layer.

The transfer matrix (TM) for the entire structure with N number of periods is represented as

$$M = M_j^{\ N} = \frac{m_{11}m_{12}}{m_{21}m_{22}}$$

The TM for the proposed structure with alternate HH and LL layers is represented as

$$M = M_1 M_2^{12} M_1$$

Transmission coefficient for the above structure is given by

 $t = \frac{2p_{\rm sub}}{m_{11} + m_{12}p_{\rm sup}p_{\rm sub} + m_{21} + m_{22}p_{\rm sup}}$

For TE mode, $p_{sub} = n_{sub} cos(\theta_{sub})$ and $p_{sup} = n_{sup} cos(\theta_{sup})$

This gives that the percentage of transmission as

$$T(\%) = \frac{p_{\rm sup}}{p_{\rm sub}} t^2$$

3. Materials and methods

1D PC is used to design the proposed pressure sensor. By selectively etching the silicon slab it is possible to form such structure shown in Fig. 1. Etched region acts as a low RI region and remaining silicon region acts as high RI region. Hence there is a periodic RI variation in one direction and acts as a 1D PC. Total number of high and low RI region in the structure is called period (N).

3.1. Material selection

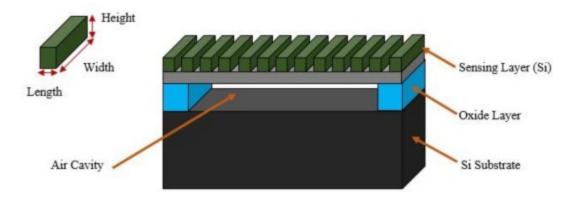
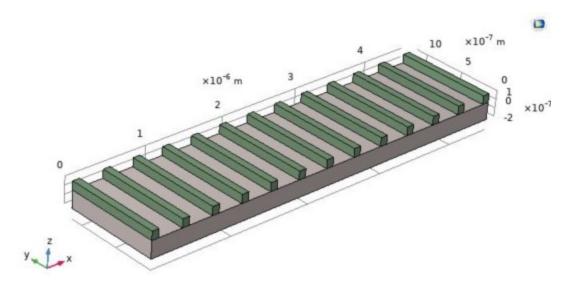

Using silicon-on-insulator (SOI) technology it is possible to fabricate the proposed sensor design (Seshan, 2012, Technology et al., 2014). Silicon material can be used for sensing applications and is widely accepted because of their good accuracy, low power consumption and are capable of operating in high frequency range (Seshan, 2012). Wavelength of the incident light beam is taken as 1.15µm, which lies in the near-infrared region (0.78–1.4µm). Such light beams can be generated by using laser light sources (Wang and Rollins, 2007, Kurkov et al., 2010). Silicon micro-structure devices can be operated with these laser pumps. Using laser sources, a very high frequency (in the range of THz) can be obtained (Rogalin et al., 2018). The refractive index of silicon (Si) is 3.42 (Huang, 2003) with the lower absorption coefficient (<0.6 cm⁻¹) in the selected operating wavelength (Jones and Jones, 2010). A 1D photonic structures can be fabricated with good accuracy as compared to other types of PC's using advanced micro-machining techniques. Fabrication of 1D PC device can be achieved by using chemical vapor deposition (CVD) method (Goyal et al., 2019, Chen et al., 2004, Stomeo et al., 2010), spin coating method (Shen et al., 2016), sol-gel (Ilinykh and Matyushkin, 2016, Ilinykh and Matyushkin, 2016), magnetron sputtering (Schürmann et al., 2006), molecular beam epitaxy (Nishimoto et al., 2014), reactive ion beam etching (Wahlbrink et al., 2005, Di Trani et al., 2020), dry etching (Solehmainen et al., 2005) and wet etching (Rollo et al., 2019) techniques. The optical thickness of each layer is chosen to be equal to guarter wavelength of the input light to satisfy the Bragg Reflection condition. The elasto-optic constants of silicon material in the selected operating wavelength are listed in Table 1.

Table 1. Elasto-optic constants of Si material (Huang, 2003).

Material	λ ₀ (μm)	n ₀	p ₁₁	p ₁₂	p 44	C ₁ (10 ⁻¹² /Pa)	C ₂ (10 ⁻¹² /Pa)	C ₃ (10 ⁻¹² /Pa)
Silicon	1.15	3.42	-0.101	0.0094	_	-11.35	3.65	_

2.7 Dronocad cancor decign

The conceptual structure of the proposed pressure sensor is shown in the Fig. 2. At the top 1D <u>silicon PC</u> structure is formed which is used to sense the applied pressure. Presence of air gap cavity below the sensing layer helps PC structure for flexible movement in <u>downward direction</u> with the applied pressure. Silicon-on-Insulator (SOI) fabrication of such structures is possible and similar structures are fabricated in the literature (Suni et al., 2006, Kluba et al., 2021, Luoto et al., 2007, Young et al., 2004). The deformation of 1D PC changes the dielectric constant of the material and hence its effective refractive-index (Huang, 2003). Proposed structure is designed and analyzed using an FEM tool. The physical dimensions of sensing layer structure are tabulated in Table 2 and Fig. 3 shows its design using an FEM tool. Total height of the sensing layer is 3µm with the width and length equal to optical wavelength (λ) and quarter wavelength (λ /4) of the input light respectively.



Download: Download high-res image (111KB) Download: Download full-size image

Fig. 2. Conceptual three dimensional model of the proposed sensor structure.

Layers	Height (µm)	Width (μm)	Length (µm)
HIL	1	1.15	0.084
LIL	1	1.15	0.2875
Base material	2	1.15	4.542

Table 2. Physical dimensions of the sensing layer of the proposed structure.

Download: Download high-res image (201KB) Download: Download full-size image

Fig. 3. 1D <u>PC</u> design of the proposed structure using an FEM tool.

3.3. Pressure sensing principle

Proposed silicon 1D PC structure can be used to detect the applied hydrostatic pressure. With the applied boundary pressure there is a significant change in the optical and electronic properties of the material (Huang, 2003). Dielectric constant of the silicon layer and hence PBG of the structure changes with induced stress which is created due to applied pressure. This change in dielectric constant changes the refractive-index of the material due to elasto-optic effect and it also changes the optical performance of the device. Hence, change in RI of the structure can be used as a sensing parameter to find the applied hydrostatic pressure. Mathematically, the relationship between stress induced and RI of material is represented as (Upadhyaya et al., 2021, Olyaee and Dehghani, 2012, Huang, 2003)

$$\begin{array}{c} n_{\rm xx} \\ n_{\rm yy} \\ n_{\rm yz} \\ n_{\rm yz} \\ n_{\rm xy} \\ n_{x$$

In the above equation, the stress-optic constants, $C_i i = 1, 2, 3$ have the following relationship

$$C_{1} = \frac{n_{0}^{3}(p_{11} - 2vp_{12})}{2E}$$
$$C_{2} = \frac{n_{0}^{3}(p_{12} - v(p_{11} + p_{12}))}{2E}$$

Loading [Math]ax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js

(1)

$$C_3 = \frac{n_0^3 p_{44}}{2G}$$

where, E, G and v are Young's modulus, <u>Shear modulus</u> and Poisson's ratio respectively.

For isotropic crystals (Upadhyaya et al., 2021, Olyaee and Dehghani, 2012, Huang, 2003)

$$p_{44} = \frac{(p_{11} - p_{12})}{2}$$
$$G = \frac{E}{2(1+\nu)}$$

Here, p_{11} , p_{12} and p_{44} are the strain <u>optic</u> constants.

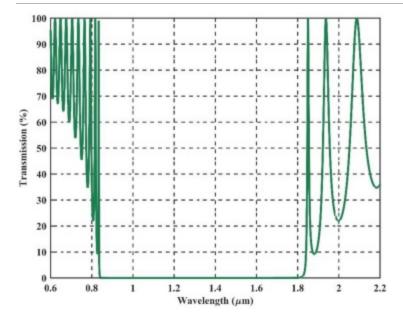
The stress in ij plane is denoted as σ_{ij} and n_{ij} is the corresponding change in RI of the material. If the pressure exerted in only one direction (normal to the plane of the PC) then the whole device is under stress. Therefore,

$$\sigma_{\rm xx} = \sigma_{\rm yy} = \sigma_{\rm zz} = \sigma$$

$$\sigma_{\rm xy} = \sigma_{\rm yz} = \sigma_{\rm zx} = 0$$

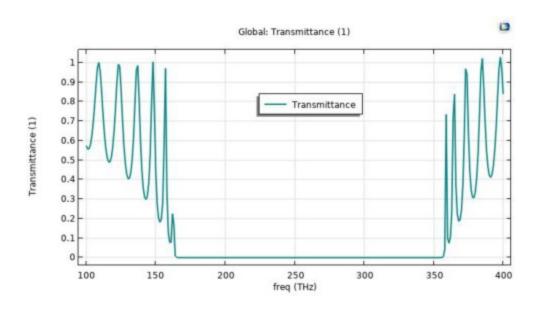
Hence equation (1) can be rewritten as (Upadhyaya et al., 2021, Olyaee and Dehghani, 2012)

$$n = n_0 - C_1 + 2C_2\sigma \tag{2}$$


The applied pressure exerts stress (σ) on the 1D PC which intern causes change in RI of the silicon material.

Equation (2) shows the relationship between RI of the material and stress induced. Change in the stress induced affects RI of the material and this can be detected by measuring the shift in wavelength of the resonant mode propagating through the structure.

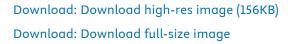
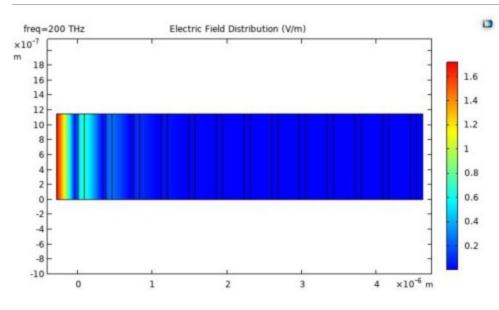
4. Results and discussions


An input <u>light beam</u> of 1.15µm wavelength is made to incident normally on the structure from input side (In the x-direction of Fig. 3). The transmission spectrum obtained for such structures containing band gap region is shown in the Fig. 4. The photonic band gap region exists from 0.84µm to 1.83µm as shown in Fig. 4 and its equivalent frequency domain plot showing band gap region from 163.8THz to 356.7THz is shown in Fig. 5.

```
Loading [Math]ax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js
```


Download: Download high-res image (192KB) Download: Download full-size image

Fig. 4. Transmission spectrum of proposed sensing layer structure containing <u>PBG</u> in wavelength domain.

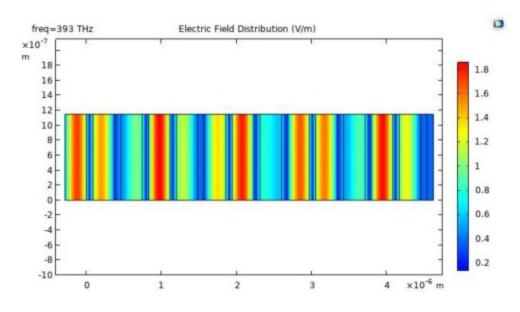
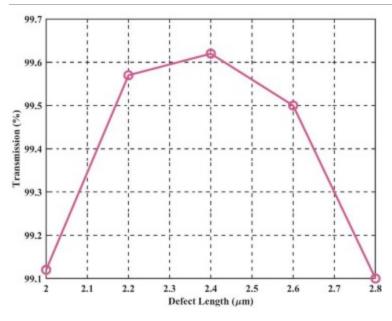

Fig. 5. Transmission spectrum of proposed sensing layer structure containing <u>PBG</u> in frequency domain.

Fig. 6, Fig. 7 shows the electric field (EF) distribution in the proposed structure. Fig. 6 shows Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js Iz which lies in PBG region and Fig. 7 shows EF distribution in the structure at frequency of 393THz which lies outside the bang gap region. It is clearly observed form the EF distribution that 200THz signal can't propagating through the structure as it lies in the band gap region and 393THz signal is allowed for its propagation as it lies outside the band gap region.

Download: Download high-res image (128KB) Download: Download full-size image

Fig. 6. Electric field distribution in the 1D <u>PC</u> structure at 200THz.



Download: Download high-res image (168KB)

Download: Download full-size image

Fig. 7. Electric field distribution in the 1D PC structure at 393THz.

The transmission properties of PC structures can be changed with the introduction of defect cavity (Aly and Zaky, 2019, Abd El-Aziz et al., 2019). In this work silicon high-index layer is introduced at the center region which acts as a defect cavity and alters the periodicity of the structure. This allows the propagation of resonant mode through the structure. The geometrical length of this <u>defect layer</u> affects the transmission properties and also sensitivity of the sensor (Aly and Zaky, 2019). Therefore, the geometrical length of the defect cavity has to be carefully chosen to obtain better performance. Initially, the geometrical length of the central defect cavity (l_D) is chosen as 2µm which shows good transmission as compared with the lower cavity lengths. Percentage transmission of light through the structure is observed in the transmission <u>spectrum plot</u>. Influence of cavity <u>defect length</u> on the transmission percentage is observed by changing the cavity length and is plotted as shown in the Fig. 8. The plot obtained concludes that the percentage transmission of light through the structure is a dependent quantity on defect cavity length.

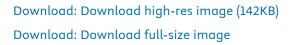
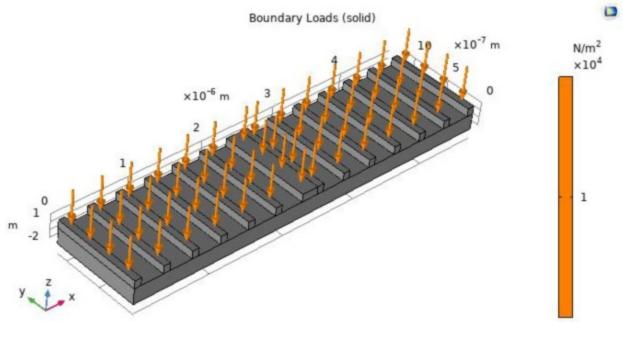
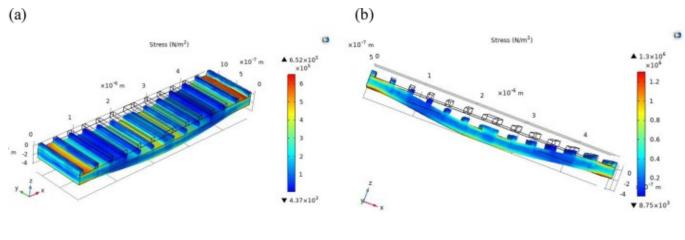
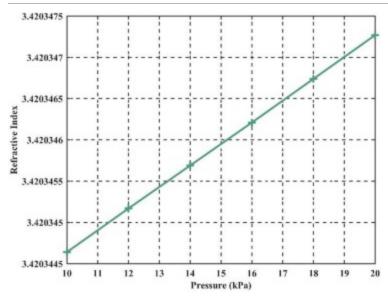



Fig. 8. Influence of defect <u>cavity length</u> on transmission percentage of the structure.


From the above graph it is clear that, a very high transmission of 99.63% is obtained for a defect cavity length of 2.4µm. Hence, to obtain better light transmission the defect cavity length is chosen as 2.4µm. Sensitivity of the structure is calculated with various applied boundary loads and varying defect cavity length. <u>Normal distribution</u> of the applied boundary load pressure is as shown in the Fig. 9.

Download: Download high-res image (262KB) Download: Download full-size image

Fig. 9. Normally distributed boundary load pressure on the 1D PC structure.


Change in RI of the material with the stress induced can be obtained using equation (1). Boundary load pressure is varied from 10kpa to 20kpa to obtain the stress induced on the structure and is tabulated. There is a downward displacement of the PC structure with the applied pressure. If no boundary load is applied, then there is no stress development and the structure has RI of 3.42. The 1D PC structure is designed and simulated using an FEM tool and observed the stress induced. There is an increase in the surface stress with the increase in applied boundary load pressure. The boundary load is varied from 10kpa to 20kpa insteps of 2kpa and the corresponding stress value was recorded. Fig. 10 (a) and (b) shows the <u>deformation of structure</u> with stress developed for the applied boundary load of 10kpa and 20kpa respectively.

Download: Download high-res image (235KB) Download: Download full-size image

Fig. 10. 1D PC deformation with the applied pressure of (a) 10kpa and (b) 20kpa.

Induced stress results in structural deformation and this intern alters the RI of the material. The relationship between the applied boundary pressure and corresponding <u>RI change</u> is shown in the Fig. 11.

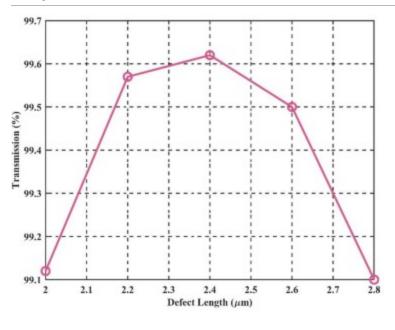

Download: Download high-res image (150KB) Download: Download full-size image

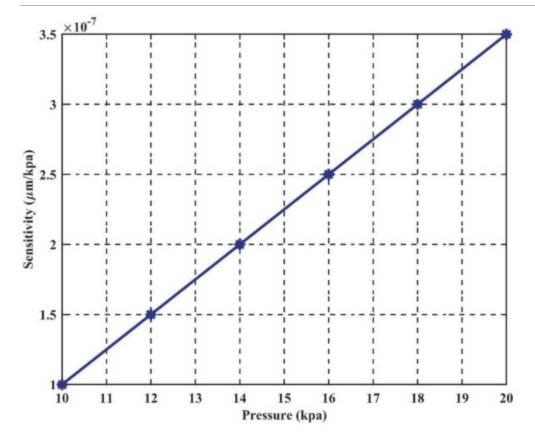
Fig. 11. Refractive-index variation of <u>silicon</u> sensing layer with the applied pressure.

From the graph it is concluded that there exists a linear relationship between the applied boundary load pressure and the corresponding change in the RI of the material. This RI change can be used as a parameter to sense the applied unknown pressure.

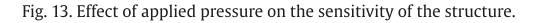
Loading [Math]ax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js
4.1. CallDrating the defect cavity length

The geometrical length (l_D) of the defect cavity is varied to observe its effect on the transmission spectrum. The physical dimensions of the defect cavity affect the sensing parameters of the sensor (Aly and Zaky, 2019). Fig. 12 represents the variation of transmission percentage with the increase in defect cavity length from 2µm to 2.8µm. It is observed that when cavity length is equal to 2.4µm, then the structure exhibits very high transmission percentage of 99.63%. Hence the cavity is length is chosen as 2.4µm for further analysis.

Download: Download high-res image (142KB) Download: Download full-size image


Fig. 12. Effect of defect <u>cavity length</u> on the transmission percentage.

Ability of the sensor to sense smallest change in the measuring quantity is called sensitivity. Mathematically it is given as change in the wavelength for the corresponding change in applied pressure.


$$S = \frac{\Delta \lambda}{\Lambda P} \text{nm} / \text{kpa}$$
(3)

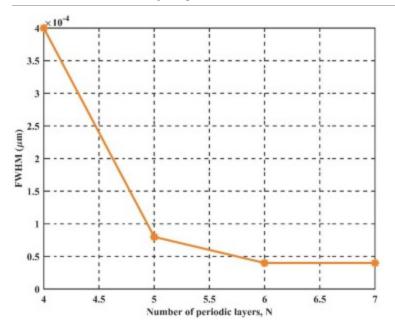
Sensitivity variation of the structure with the applied boundary load is computed and plotted as shown in the Fig. 13. From the plot it is clear that there is a linear relationship with the applied boundary pressure and sensitivity. A highest sensitivity of $3.5 \times 10^{-7} \,\mu$ m/kpa is obtained for the boundary load of 20kpa.

```
Loading [Math]ax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js
```


Download: Download high-res image (202KB) Download: Download full-size image

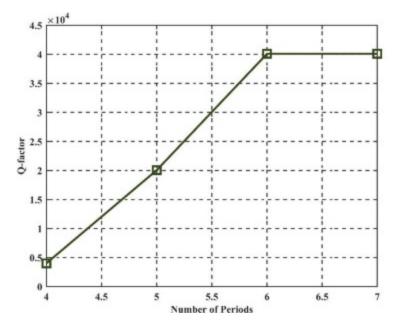
4.2. Calibrating the number of periods

Number of periods (N) is an another significant factor has to be considered while designing the <u>optical sensor</u> (Abd El-Aziz et al., 2019). The <u>Q factor</u> of a sensor indicates the ability of sensor to accurately detect the exact pressure applied. Mathematically it is represented as


$$Q = \frac{\lambda_r}{\text{FWHM}} \tag{4}$$

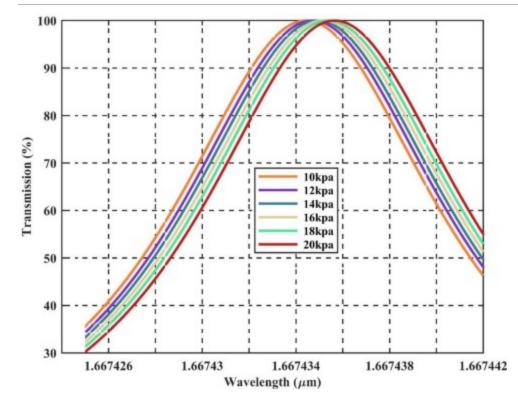
where, λ_r is the resonant frequency and FWHM represents the width of the resonant mode at its half maximum.

The effect of varying the number periods on FWHM and <u>Q factor</u> is computed and is plotted in Fig. 14, Fig. 15 respectively. The FWHM of the transmission spectrum reduces with the increase in the number of periods on either side of the cavity. This is due to very high confined mirroring action of the light around the cavity. As the number of DBR layers increases, the transmitting light is confined through the cavity over long time and hence the

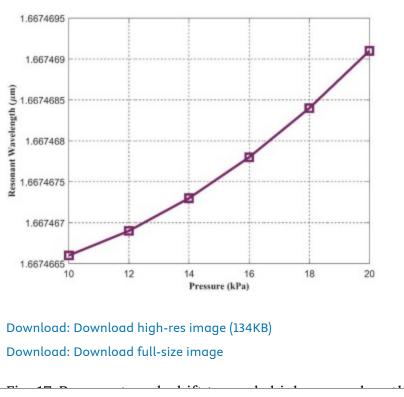

Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js nsmission spectrum reduces with

the increase in the number of periods and this can be clearly observed in the Fig. 14. The Q factor of a sensor is inversely proportional to the FWHM and hence Q factor increases with the reduction in the FWHM. The improvement in Q factor with the increase in the DBR layers can be clearly observed in the Fig. 15. It is clarified from the graph that there is an increase in the Q factor due to reduction in the FWHM with the increase in the number of layers from 2 to 6 and it became constant above this value. Hence the optimum number of periods on either side of the defect cavity is taken as 6 to reduce fabrication complexity which results in very high Q factor of 40,104.

Download: Download high-res image (133KB) Download: Download full-size image


Fig. 14. Effect of number of periods on the FWHM of the proposed sensor.

Download: Download high-res image (135KB) Download: Download full-size image


Fig. 15. Effect of number of periods on the <u>Q factor</u> of the proposed sensor.

Next, the performance of the sensor is evaluated by incorporating the above optimized values of l_D =2.4µm with N=6. The applied pressure is varied from 10kpa to 20kpa with an increment of 2kpa and the corresponding shift in the resonant wavelength of the transmission is observed and is plotted as shown in Fig. 16. The resonant mode peak is observed at 1.6674666µm for 10kpa applied pressure and is shifted to 1.6674691µm for 20kpa. There is a significant shift in the resonant wavelength towards higher wavelength region with the increase in applied pressure. This shift in the resonant peak with applied pressure is plotted in Fig. 17. Wavelength shift can be measured with the optical spectrometer and from this one can determine the applied unknown pressure.

Download: Download high-res image (313KB) Download: Download full-size image

Fig. 16. Wavelength shift of transmission spectrum with the applied pressure from 10kpa to 20kpa.

4.3. Other important sensing parameters

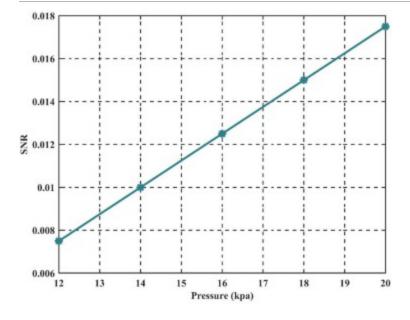
Two other important sensing parameters of an <u>optical sensor</u> are <u>Signal to Noise Ratio</u> (SNR) and Detection Limit (DL). They are defined as follows (Abd El-Aziz et al., 2019, White and Fan, 2008).

The accuracy of the sensor to measure the desired quantity in a <u>noisy environment</u> is determined by **signal to noise ratio**. This is the permitted change in resonant wavelength in the FWHM range.

$$SNR = \frac{\Delta\lambda_{res}}{\Delta\lambda_{1/2}}$$
(5)

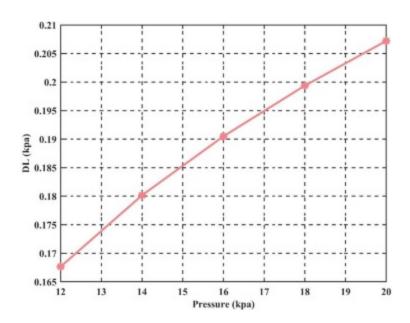
Detection Limit (DL) measures how well the sensor can pick up even the slightest RI variations. Mathematically,

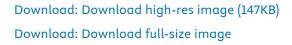
$$\delta n = \frac{\Delta \lambda_{1/2}}{1.5S(SNR)^{0.25}} \tag{6}$$


where, $\Delta \lambda_{1/2}$ is the FWHM of the resonant wavelength

S is the sensitivity of the sensor

SNR is signal to noise ratio


 δn is detection limit


Fig. 18, Fig. 19 shows the variation of SNR and DL for the various applied hydrostatic pressure respectively. The SNR of the sensor increases linearly as the applied pressure is varied from 12kpa to 20kpa in the steps of 2kpa and is plotted in the Fig. 18. This the due the shift in the resonant peak towards higher wavelength region with the increase in the applied boundary load pressure. The proposed sensor shows highest SNR of 0.0177 for the applied boundary load of 20kpa. The variation of detection limit with the applied pressure is plotted in the Fig. 19, which is almost linear with the increase in applied pressure. For the proposed sensor, a very minimum detection limit of 0.167kpa is achieved for the applied boundary load pressure of 12kpa.

Download: Download high-res image (135KB) Download: Download full-size image

Fig. 18. <u>SNR</u> of the proposed sensor with the applied pressure from 12kpa to 20kpa.

Fig. 19. Detection limit of the proposed sensor with the applied pressure from 12kpa to 20kpa.

To justify the proposed work for its goodness, the design is compared with the recently <u>reported works in the literature. The tabulated values in the Table 3</u> shows that there is a <u>Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js</u> s compared to the existing designs. Table 3. Comparison of the proposed sensor design with the recent works.

SI. No.	Structure	Sensitivity (nm/GPa)	Reference	Year
1	1D PC of SiO ₂ -TiO ₂ with GaAs defect	8.6	(Ben-Ali et al., 2020)	2020
2	1D PC of superconductor-semiconductor with GaAs defect	104	(Segovia-Chaves and Vinck- Posada, 2019)	2019
3	1D PC of Si-SiO ₂ with Polystyrene defect	199	(Elsayed et al., 2021)	2021
4	1D PC of Si-Air with Si defect	350	Proposed work	-

5. Conclusion

A 1D silicon photonic-crystal pressure sensor is designed and analyzed to detect the applied hydrostatic pressure. The sensing principle behind the proposed work is the change in effective refractive-index of the <u>silicon material</u> with the applied pressure. To sense the applied pressure, a silicon (Si) sensing layer is positioned at the top of the device. By applying a boundary load on the sensing layer, the proposed sensor's pressure sensing performance has been investigated. A central cavity defect region allows the propagation of defect mode through the proposed structure. The boundary load pressure is varied from 10kpa to 20kpa in steps of 2kpa and the corresponding wavelength shift is measured to detect the applied boundary load pressure. Cavity length (l_D) and the total number of layers (N) is calibrated to get the optimized sensing performance. The proposed sensor exhibits a very high sensitivity and Q factor of 350nm/GPa and 40,104 respectively. The obtained results are compared with the recently reported works in the literature. From this comparison it is justified that the proposed sensor has better sensing performance and can be a good candidate for low pressure measurement.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Recommended articles

Data will be made available on request.

References

Abd El-Aziz et al., 2019 O.A. Abd El-Aziz, H.A. Elsayed, M.I. Sayed

One-dimensional defective photonic crystals for the sensing and detection of protein

Appl. Opt., 58 (30) (2019), p. 8309, 10.1364/ao.58.008309 🛪

View in Scopus **7** Google Scholar **7**

Aly and Zaky, 2019 A.H. Aly, Z.A. Zaky

Ultra-sensitive photonic crystal cancer cells sensor with a high-quality factor

Cryogenics (Guildf) (2019), Article 102991, 10.1016/j.cryogenics.2019.102991 7

📜 View PDF View article View in Scopus 🛪 Google Scholar 🤊

Ben-Ali et al., 2020 Y. Ben-Ali, F.Z. Elamri, A. Ouariach, F. Falyouni, Z. Tahri, D. Bria

A high sensitivity hydrostatic pressure and temperature based on a defective 1D photonic crystal

J. Electromagn. Waves Appl., 34 (15) (2020), pp. 2030-2050, 10.1080/09205071.2020.1806116 View in Scopus A Google Scholar A

Busch and John, 1999 K. Busch, S. John

Liquid-crystal photonic-band-gap materials: The tunable electromagnetic Vacuum Phys. Rev. Lett., 83 (5) (1999), pp. 967-970, 10.1103/PhysRevLett.83.967 View in Scopus Z Google Scholar Z

Chen et al., 2004 H.L. Chen, H.F. Lee, W.C. Chao, C.I. Hsieh, F.H. Ko, T.C. Chu

Fabrication of autocloned photonic crystals by using high-density-plasma chemical vapor deposition

J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., 22 (6) (2004), p. 3359, 10.1116/1.1824059 A View in Scopus A Google Scholar A

Di Trani et al., 2020 N. Di Trani, et al.

Electrostatically gated nanofluidic membrane for ultra-low power controlled drug delivery

Lab Chip. 20 (9) (2020) pp. 1562-1576 10 1029/d0lc00121 Loading [Math]ax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js Elsayed et al., 2021 H.A. Elsayed, A. Sharma, Z.A. Alrowaili, T.A. Taha

Theoretical investigation of pressure sensing using a defect of polystyrene inside photonic crystals

Mater. Chem. Phys., 270 (June) (2021), p. 124853, 10.1016/j.matchemphys.2021.124853 🤊

🔀 View PDF View article View in Scopus 🛪 Google Scholar 🛪

González and Porras-Montenegro, 2012 L.E. González, N. Porras-Montenegro

Pressure, temperature and plasma frequency effects on the band structure of a 1D semiconductor photonic crystal

Phys. E Low-Dimen. Syst. Nanostruct., 44 (4) (2012), pp. 773-777, 10.1016/j.physe.2011.11.018 🤊

陇 View PDF View article View in Scopus 🛪 Google Scholar 🤊

Gowda et al., 2021 R.B. Gowda, K. Saara, P. Sharan

Detection of oral cancerous cells using highly sensitive one-dimensional distributed Bragg's Reflector Fabry Perot Microcavity

Optik (Stuttg), 244 (July) (2021), p. 167599, 10.1016/j.ijleo.2021.167599 🤊

🔀 View PDF View article View in Scopus 🛪 Google Scholar 🛪

Gowda et al., 2021 R.B. Gowda, M.S. Manna, K. Saara, P. Sharan

Detection of Plasmodium Falciparum Parasite Intraerythrocytic Stages using One Dimensional Distributed Bragg Reflector Biosensor

IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC (2021), 10.1109/R10-HTC53172.2021.9641586 A Google Scholar A

Gowda et al., 2022 R.B. Gowda, H.N. Gayathri, P. Sharan, K. Saara

Theoretical investigation of Bragg Reflector optical sensor for the measurement of cryogenic temperature

Mater. Today Proc., 58 (xxxx) (2022), pp. 451-455, 10.1016/j.matpr.2022.02.482 🤊

📜 View PDF View article View in Scopus 🛪 Google Scholar 🤊

Goyal et al., 2019 A.K. Goyal, H.S. Dutta, S. Pal

Development of uniform porous one-dimensional photonic crystal based sensor Optik (Stuttg)., 223 (November 2019) (2020), pp. 1-7, 10.1016/j.ijleo.2020.165597 7

Optik (Stuttg)., 223 (November 2019) (2020), pp. 1-7, 10.1016/J.IJleo.2020.165597 🛪

Google Scholar 🤊

Herrera et al., 2018 A.Y. Herrera, J.M. Calero, N. Porras-Montenegro

Pressure. temperature. and thickness dependence of transmittance in a 1D Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js stal J. Appl. Phys., 123 (3) (2018), 10.1063/1.5009708 7

Google Scholar 🤊

Huang, 2003 M. Huang

Stress effects on the performance of optical waveguides

Int. J. Solids Struct., 40 (7) (2003), pp. 1615-1632, 10.1016/S0020-7683(03)00037-4 🛪

🔀 View PDF View article View in Scopus 🛪 Google Scholar 🛪

Ilinykh and Matyushkin, 2016 V.A. Ilinykh, L.B. Matyushkin

Sol-gel fabrication of one-dimensional photonic crystals with predicted transmission spectra J. Phys. Conf. Ser., 741 (1) (2016), pp. 6-8, 10.1088/1742-6596/741/1/012008 7 Google Scholar 7

Ilinykh and Matyushkin, 2016 V.A. Ilinykh, L.B. Matyushkin

Fabrication of one-dimensional photonic crystals by sol-gel method no. February Proc. 2016 IEEE North West Russ. Sect. Young Res. Electr. Electron. Eng. Conf. EIConRusNW 2016 (2016), pp. 47-50, 10.1109/EIConRusNW.2016.7448115 7

View in Scopus 7 Google Scholar 7

Inan et al., 2017 H. Inan, et al.

Photonic crystals: Emerging biosensors and their promise for point-of-care applications

Chem. Soc. Rev., 46 (2) (2017), pp. 366-388, 10.1039/c6cs00206d 🛪

View in Scopus 7 Google Scholar 7

Joannopoulos et al., 2008 J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade

Photonic Crystals: Molding the Flow of Light

(Second ed.), Princeton University Press, Singapore (2008)

Google Scholar 🛪

Jones and Jones, 2010 M.H. Jones, S.H. Jones

no. 540

Optical Properties of Silicon, Virginia Semicond. Inc (2010), p. 8

View PDF View article View in Scopus 7 Google Scholar 7

Kluba et al., 2021 M.M. Kluba, J. Li, K. Parkkinen, M. Louwerse, J. Snijder, R. Dekker Cavity-box soi: Advanced silicon substrate with pre-patterned box for

Loading [Math]ax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js

Micromachines, 12 (4) (2021), 10.3390/mi12040414 🤊

Google Scholar ↗

Konopsky et al., 2013 Konopsky, V.N., Karakouz, T., Alieva, E.V, Vicario, C., Sekatskii, S.K., Dietler, G., 2013, "Photonic Crystal Biosensor Based on Optical Surface Waves," pp. 2566–2578, doi:10.3390/s130202566.

Google Scholar 🕫

Kurkov et al., 2010 A.S. Kurkov, V.V. Dvoyrin, a.V. Marakulin

All-fiber 10 W holmium lasers pumped at lambda=1.15 microm [Online].Available: Opt. Lett., 35 (4) (2010), pp. 490-492 http://www.ncbi.nlm.nih.gov/pubmed/20160794 7 View in Scopus 7 Google Scholar 7

Luoto et al., 2007 H. Luoto, K. Henttinen, T. Suni, J. Dekker, J. Mäkinen, A. Torkkeli MEMS on cavity-SOI wafers Solid. State. Electron., 51 (2) (2007), pp. 328-332, 10.1016/j.sse.2007.01.007 A View PDF View article View in Scopus A Google Scholar A

Nishimoto et al., 2014 M. Nishimoto, K. Ishizaki, K. Maekawa, Y. Liang, K. Kitamura, S. Noda Fabrication of photonic crystal lasers by MBE air-hole retained growth Appl. Phys. Express, 7 (9) (2014), p. pp, 10.7567/APEX.7.092703 7 Google Scholar 7

Olyaee and Dehghani, 2012 S. Olyaee, A.A. Dehghani

Nano-pressure sensor using high quality photonic crystal cavity resonator no. 2

Proc. 2012 8th Int. Symp. Commun. Syst. Networks Digit. Signal Process. CSNDSP 2012 (2012), pp. 3-6, 10.1109/CSNDSP.2012.6292729 🦻

Google Scholar 🕫

Pandey and Yadav, 2006 N.K. Pandey, B.C. Yadav

Embedded fibre optic microbend sensor for measurement of high pressure and crack detection

Sens. Actuators, A Phys., 128 (1) (2006), pp. 33-36, 10.1016/j.sna.2006.01.010 🤊

🔀 View PDF View article View in Scopus 🛪 Google Scholar 🛪

Pinet, 2011 É. Pinet

Pressure measurement with fiber-optic sensors: commercial technologies

Loading [Math]ax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js

no. November

21st Int Conf. Opt. Fiber Sensors (2011), p. 775304, 10.1117/12.895536 🤊

View in Scopus *¬* Google Scholar *¬*

Pinet et al., 2007 É. Pinet, C. Hamel, B. Glišić, D. Inaudi, N. Miron

Health monitoring with optical fiber sensors: from human body to civil structures

Heal. Monit. Struct. Biol. Syst., 6532 (418) (2007), p. 653219, 10.1117/12.715186 🤊

View in Scopus A Google Scholar A

Pinet et al., 2010 É. Pinet, S. Ellyson, F. Borne

Temperature fiber-optic point sensors: Commercial technologies and industrial applications Inf. MIDEM, 40 (4) (2010), pp. 273-284 View in Scopus 7 Google Scholar 7

Porras-Montenegro and Duque, 2010 N. Porras-Montenegro, C.A. Duque

Temperature and hydrostatic pressure effects on the photonic band structure of a 2D honeycomb lattice

Phys. E Low-Dimen. Syst. Nanostruct., 42 (6) (2010), pp. 1865-1869, 10.1016/j.physe.2010.02.016

📜 View PDF 🛛 View article 🖓 View in Scopus 🛪 🖉 Google Scholar 🤊

Rogalin et al., 2018 V.E. Rogalin, I.A. Kaplunov, G.I. Kropotov Optical Materials for the THz Range Opt. Spectrosc., 125 (6) (2018), pp. 1053-1064, 10.1134/S0030400X18120172 View in Scopus A Google Scholar A

Rollo et al., 2019 S. Rollo, D. Rani, W. Olthuis, C. Pascual García Single step fabrication of Silicon resistors on SOI substrate used as

Thermistors

Sci. Rep., 9 (1) (2019), pp. 1-7, 10.1038/s41598-019-38753-x 7

View in Scopus 7 Google Scholar 7

Roriz et al., 2013 P. Roriz, O. Frazão, A.B. Lobo-Ribeiro, J.L. Santos, J.A. Simões Review of fiber-optic pressure sensors for biomedical and biomechanical applications

J. Biomed. Opt., 18 (5) (2013), Article 050903, 10.1117/1.jbo.18.5.050903 🛪

View in Scopus 7 Google Scholar 7

Temperature and pressure dependences of the dielectric constants of semiconductors Phys. Rev. B, 27 (6) (1983), pp. 3494-3505, 10.1103/PhysRevB.27.3494 7

View in Scopus 🛪 👘 Google Scholar 🤊

Schürmann et al., 2006 U. Schürmann, H. Takele, V. Zaporojtchenko, F. Faupel

Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering

Thin Solid Films, 515 (2 SPEC. ISS) (2006), pp. 801-804, 10.1016/j.tsf.2005.12.249 7

View PDF 🛛 View article 🖓 View in Scopus 🛪 🖉 Google Scholar 🤊

Segovia-Chaves and Vinck-Posada, 2018 F. Segovia-Chaves, H. Vinck-Posada

The effect of the hydrostatic pressure and temperature on the defect mode in the band structure of one-dimensional photonic crystal

Optik (Stuttg), 156 (2018), pp. 981-987, 10.1016/j.ijleo.2017.12.037 7

🔀 View PDF View article View in Scopus 🛪 Google Scholar 🤊

Segovia-Chaves and Vinck-Posada, 2019 F. Segovia-Chaves, H. Vinck-Posada

Tuning of the defect mode in a 1D superconductor-semiconductor crystal with hydrostatic pressure dependent frequency of the transverse optical phonons Phys. C Supercond. Appl., 556 (2019), pp. 7-13, 10.1016/j.physc.2018.11.009 7

View PDF View article View in Scopus 7 Google Scholar 7

Seshan, 2012 K. Seshan

Scaling and its Implications for the Integration and Design of Thin Film and Processes (third ed.), Elsevier Inc. (2012), 10.1016/B978-1-4377-7873-1.00002-4

Google Scholar 🛪

Sharma et al., 2018 Bhupendra K. Sharma, Anna Stoesser, Sandeep Kumar Mondal, Suresh Kumar Garlapati, Mohammed H. Fawey, Venkata Sai Kiran Chakravadhanula, Robert Kruk, Horst Hahn, Subho Dasgupta

ACS Appl. Mater. Interfaces, 10 (2018), pp. 22408-22418

Crossref 7 View in Scopus 7 Google Scholar 7

Shen et al., 2016 H. Shen, Z. Wang, Y. Wu, B. Yang

One-dimensional photonic crystals: Fabrication, responsiveness and emerging applications in 3D construction

RSC Adv 6 (6) (2016) pp 4505-4520 10 1039/c5ra21373h 7 Loading [Math]ax]/jax/output/SVG/fonts/TeX/Main/Regular/GreekAndCoptic.js Singh et al., 2014 A. Singh, K.B. Thapa, N. Kumar

Analysis and design of optical biosensors using one-dimensional photonic crystals Opt. - Int. J. Light Electron Opt. (2014), pp. 1-7, 10.1016/j.ijleo.2014.08.172 7 View in Scopus 7 Google Scholar 7

Society, 2017 R. Society, "Birth Anniversary," vol. 6, no. 1, pp. 121–130, 2017.

Google Scholar ↗

Solehmainen et al., 2005 K. Solehmainen, et al.

Dry-etched silicon-on-insulator waveguides with low propagation and fiber-coupling losses

J. Light. Technol., 23 (11) (2005), pp. 3875-3880, 10.1109/JLT.2005.857750 🤊

View in Scopus 7 Google Scholar 7

Steen, 1999 Steen, W., 1999, "Principles of Optics M. Born and E. Wolf, 7th (expanded) edition, Cambridge University Press, Cambridge, 1999, 952pp. 37.50/US \$59.95, ISBN 0-521-64222-1," *Optics & Laser Technology*, 32(5). p. 385, 2000. doi:10.1016/s0030-3992(00)00061-x.

Google Scholar ↗

Stomeo et al., 2010 T. Stomeo, et al.

Fabrication of GaN/AlGaN 1D photonic crystals designed for nonlinear optical applications Photonic Cryst. Mater. Devices IX, 7713 (April) (2010), p. 771316, 10.1117/12.854470

View in Scopus 7 Google Scholar 7

Suni et al., 2006 T. Suni, et al.

Silicon-on-Insulator Wafers with Buried Cavities

J. Electrochem. Soc., 153 (4) (2006), p. G299, 10.1149/1.2167955 🤊

View in Scopus 7 Google Scholar 7

Technology et al., 2014 S. S. O. I. Technology, Bogaerts, W., Selvaraja, S.K., 2014. "13 - Siliconon-insulator (SOI) technology for photonic integrated circuits (PICs)". In: Silicon-On-Insulator (SOI) Technology. Ed. by Oleg Kononchuk and Bich-Yen Nguyen. Woodhead Publishing, 2014. . ISBN: 978- 0-85709-526.

Google Scholar 🕫

1-Dimensional silicon photonic crystal pressure sensor for the measurement of low pressure - ScienceDirect

Performance analysis of optomechanical-based microcantilever sensor with various geometrical shapes

Microw. Opt. Technol. Lett., 63 (4) (2021), pp. 1319-1327, 10.1002/mop.32652 🦻

View in Scopus 7 Google Scholar 7

Vijaya Shanthi and Robinson, 2014 K. Vijaya Shanthi, S. Robinson

Two-dimensional photonic crystal based sensor for pressure sensing

Photonic Sens., 4 (3) (2014), pp. 248-253, 10.1007/s13320-014-0198-8 🛪

View in Scopus A Google Scholar A

Wahlbrink et al., 2005 T. Wahlbrink, et al.

Highly selective etch process for silicon-on-insulator nano-devices

Microelectron. Eng., 78–79 (1–4) (2005), pp. 212-217, 10.1016/j.mee.2004.12.029 7

🔀 View PDF View article View in Scopus 🛪 Google Scholar 🤊

Wang and Rollins, 2007 H. Wang, A.M. Rollins

Generation of smooth continuum centered at 1.15 μm for ultrahigh resolution OCT Commer. Biomed. Appl. Ultrafast Lasers VII, 6460 (2007), p. 64600C, 10.1117/12.701392 View in Scopus Google Scholar

White and Fan, 2008 White, I.M., Fan, X., 2008, "On the performance quantification of resonant refractive index sensors," 16(2), pp. 1020–1028, doi:10.1007/s10404-007-0203-2.

Google Scholar 🤊

Wu et al., 2018 J. Wu, S. Li, M. Shi, X. Feng

Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance

Opt. Fiber Technol., 43 (February) (2018), pp. 90-94, 10.1016/j.yofte.2018.04.006 🤊

View PDF View article View in Scopus 7 Google Scholar 7

Xu et al., 2003 C. Xu, X. Hu, Y. Li, X. Liu, R. Fu, J. Zi

Semiconductor-based tunable photonic crystals by means of an external magnetic field

Phys. Rev. B - Condens. Matter Mater. Phys., 68 (19) (2003), pp. 5-8, 10.1103/PhysRevB.68.193201

Google Scholar 🤊

Silicon photonic quantum computing with spin qubits

APL Photonics, 6 (7) (2021), 10.1063/5.0049372 7

Google Scholar 🕫

Yang et al., 2014 Y. Yang, et al.

Nanomechanical three dimensional force photonic crystal sensor using shoulder-coupled resonant cavity with an inserted pillar Sens. Actuators, A Phys., 209 (2014), pp. 33-40, 10.1016/j.sna.2014.01.013

[View PDF 🛛 View article 🛛 Google Scholar 🕫

Yeh et al., 1976 Yeh, P., Yariv, A., Hong, C., and I. Introduction, "<YEHjosa77.pdf>," vol. 91125, no. November 1976, pp. 423–438, 1977.

Google Scholar ↗

Young et al., 2004 D.J. Young, J. Du, C.A. Zorman, W.H. Ko

High-temperature single-crystal 3C-SiC capacitive pressure sensor IEEE Sens. J., 4 (4) (2004), pp. 464-470, 10.1109/JSEN.2004.830301 7 View in Scopus 7 Google Scholar 7

Yu et al., 2019 H. Yu, Z. Luo, Y. Zheng, J. Ma, X. Jiang, D. Jiang
Vibration Sensing Using Liquid-Filled Photonic Crystal Fiber with a Central Air-Bore
J. Light. Technol., 37 (18) (2019), pp. 4625-4633, 10.1109/JLT.2019.2915205 A
View in Scopus A Google Scholar A

Zhao et al., 2017 Zhao, D., Augustin, L., Pustakhod, D., Williams, K., 2017, "Design of uniform and non-uniform DBR Gratings using transfer-matrix method Design of uniform and non-uniform DBR Gratings using transfer-matrix method," no. November 2015, pp. 26–27.

Google Scholar ↗

Cited by (19)

An FBG-based optical pressure sensor for the measurement of radial artery pulse pressure *¬*

2024, Journal of Biophotonics

Short-Wave Infrared Janus Metastructure With Multitasking of Wide-Range Pressure Detection and High-Resolution Biosensing Based on Photonic Spin Hall Effect a

2024, IEEE Transactions on Instrumentation and Measurement

Detection of intraerythrocytic stages of malaria parasite using one-dimensional Bragg mirror optical sensor *¬*

2024, Journal of Optics (India)

Bacterial Detection in Contaminated Water Using a Photonic Crystal Sensor **7**

2023, International Conference on Smart Systems for Applications in Electrical Sciences, ICSSES 2023

Hyperbolic Graded Index Biophotonic Cholesterol Sensor with Improved Sensitivity a

2023, Progress In Electromagnetics Research M

Assessment of Bloch surface wave-based one-dimensional photonic crystal sensor using ultraviolet range *¬*

2023, Journal of Nanophotonics

View all citing articles on Scopus 🤊

© 2023 The Authors. Published by Elsevier B.V.

All content on this site: Copyright © 2024 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.

ScienceDirect[®]

Optical Fiber Technology

Volume 77, May 2023, 103287

The development of laboratory downscale rail-wheel test rig model with optical sensors

Preeta Sharan a, Suchandana Mishra a $\stackrel{\mathrm{a}}{\sim}$ \boxtimes , Anup M. Upadhyaya b

Show more 🗸

https://doi.org/10.1016/j.yofte.2023.103287 ↗ Get rights and content ↗

Highlights

- 1:3 scale laboratory train model.
- Rail track stability, rail-wheel contact stress in laboratory rail <u>test rig</u>.
- Vertical force of wheel to <u>axial strain</u> on the rail measurement using <u>optical sensors</u>.
- Train axle peak detection, <u>rolling contact fatigue</u> analysis using <u>FBG</u> in laboratory train <u>test rig</u>.
- Fiber Bragg grating sensing technology in rail transport.

Abstract

SPRINGER NATURE Link

 \equiv Menu

Q Search

Home SN Computer Science Article

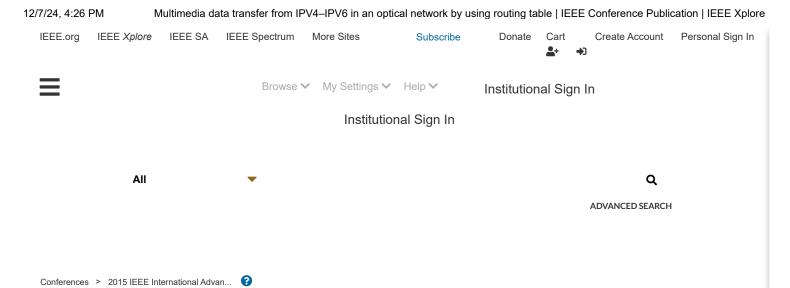
A Comprehensive Study of LB Technique in Cloud Infrastructure

Survey Article Published: 25 January 2023 Volume 4, article number 181, (2023) Cite this article

SN Computer Science

Aims and scope

Submit manuscript


A. Ajil 🖂 & E. Saravana Kumar

b 103 Accesses **c** 2 Citations Explore all metrics \rightarrow

Abstract

In the recent Web-based knowledge transfer, cloud computing is essential. The real world has been changed into a virtual one as a result of the pandemic scenario. Cloud computing plays a major role for storing and computing data using remote computing infrastructure for day-to-day activities. The primary concern in cloud computing is distributing information technology (IT) resources efficiently to record the user requests in a short duration. Load-balancing (LB) techniques distribute the system's load among its various nodes to maximize resource usage and user satisfaction. It identifies the heavy loaded and lightly loaded IT resources and balances the task among the clusters. Load balancing ensures that each node in the network shortens reaction times, utilizes optimal resource and boosts performance. To upgrade the performance metrics in cloud computing (CC), various categories of LB techniques have been developed. This survey evaluates the

. 다 Cart

Multimedia data transfer from IPV4–IPV6 in an optical network by using routing table

3 Cites in Papers **245** Full Text Views Alerts

Manage Content Alerts Add to Citation Alerts

Abstract	
Document Sections	

I. Introduction

- II. IPV4 Communication
- III. IPV6 Communication
- IV. Protocol Access Methods

V. IPV4 and IPV6 Tunneling

Authors

```
Show Full Outline -
```

Figures

References

Citations

Keywords

Metrics

Abstract:

Down

Internet Protocol version6 (IPv6) ad-hoc is a conceptual abstract to solve some of the issues of the present IP versions, say Internet Protocol version4 (IPv4). Some of t... **View more**

✓ Metadata

Abstract:

Internet Protocol version6 (IPv6) ad-hoc is a conceptual abstract to solve some of the issues of the present IP versions, say Internet Protocol version4 (IPv4). Some of the problems are delay, latency, reliability, error, address exhaustion, testing, resilience etc. The present paper will be dealing with the conversion from a protocol IPv4 to a next generation IPv6 via optical network configured with a routing table where the analysis of the liquidity of data like multimedia data transfer is done. A virtual connection path between server and client systems (as in the enterprise edition of Java - J2EE) is established using TCP (Transmission Control Protocol). The work proposed is allowed to implement networking via optical cables with a cost effective IPv4 migration to IPv6 for the multimedia communication while having a couple of optical converter devices explicitly. During experimental analysis, the tunnelling method of IPv4 to IPv6 conversion established via optical network with a routing table proved to be an easy verification routine. The duration required to ingress the data at the client end was evaluated and the results obtained while downloading **PDF** image file(.jpeg), audio file(.mp3) and video file(.mpeg4) are 0.21, 3, and 10 seconds respectively; the same selection of algorithms was also implemented with a streaming through a server at a bit rate of 10 Gbps . The file sizes of the different multimedia data is found to be constant for an image file, an audio file and a video file to be 20 Mb. Hence we have done an experimental analysis if these multimedia data is transferred via a client server configuration in the optical network by making use of our own routing table.

SPRINGER NATURE Link

Login

∑ Menu

Q Search

🔁 Cart

Home Plasmonics Article

Improved Surface Plasmon Effect in Ag-based SPR Biosensor with Graphene and WS₂: An Approach Towards Low Cost Urine-Glucose Detection

Research Published: 15 July 2023

Volume 18, pages 2273-2283, (2023) Cite this article

Plasmonics

Aims and scope

Submit manuscript

Archana Yadav, Madhusudan Mishra 🖂, Sukanta K. Tripathy, Anil Kumar, O. P. Singh & Preeta Sharan

5 703 Accesses 32 Citations 33 Altmetric Explore all metrics \rightarrow

Abstract

Gold and silver are the two notable noble metals with wide implications in surface plasmon resonance (SPR) based sensors. Gold possesses a superior SPR phenomenon compared to silver, however, with extremely high costs. To resolve this problem, the current study proposes a new gold—free SPR biosensor design employing silver as the noble metal for efficient detection of blood glucose using urine as the biosample. The proposed design

$\textbf{SPRINGERNATURE}\ Link$

Q Search

Login

∑ Menu

戸 Cart

Home Journal of Optics Article

Design of optical sensor for cancer prognosis prediction using artificial intelligence

Research Article Published: 11 July 2023

Volume 53, pages 1009–1017, (2024) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Ranjeet Kumar Pathak, Sumita Mishra & Preeta Sharan 🖂

5 204 Accesses 1 3 Citations Explore all metrics \rightarrow

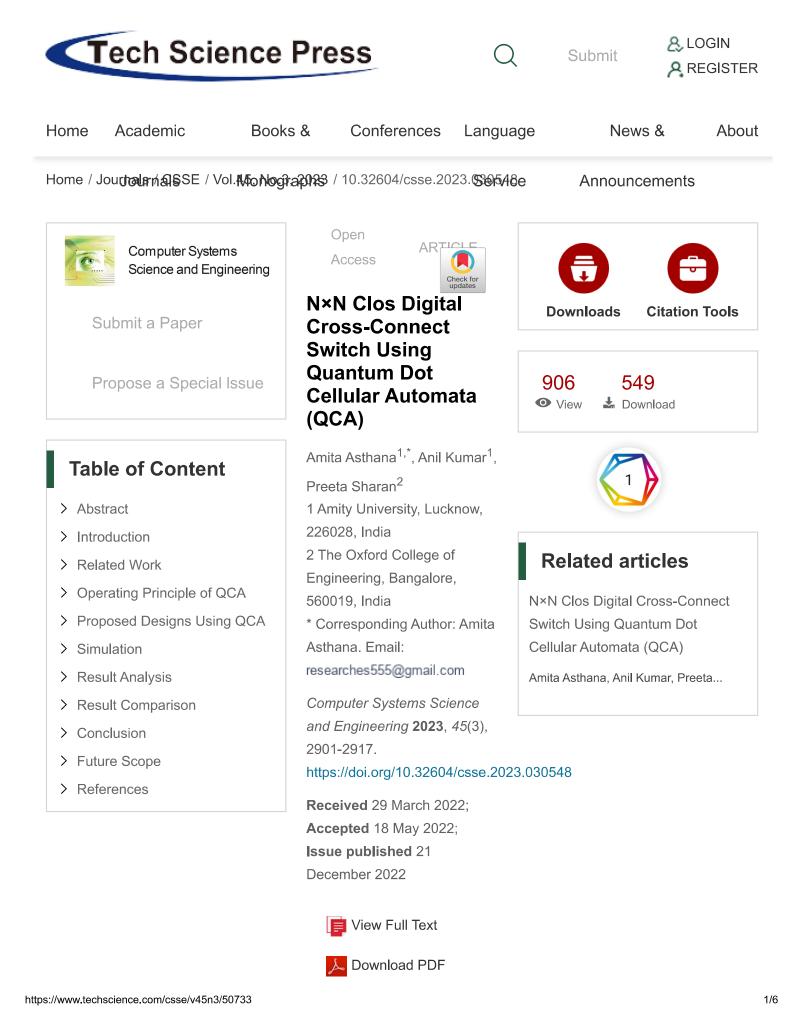
Abstract

A key role of the World Health Organisation is improving the proportion of patients with early cancer diagnosis. Due to the high rates of mortality and recurrence, the treatment process requires several months and is very expensive. Over the years, advancements in computer engineering and optical field communication have inspired numerous scholars to use a variety of computational algorithms to analyse and study the accuracy of the illness prognosis. This article discuss on the development of 2D-photonic crystal biosensor for detecting the variation in refractive index of healthy cell and different types of cancer cell. The variation in refractive index of cell is from 1.368 to 1.399. Work also shows how artificial intelligence algorithm can be used for detecting various types of cancer like blood cancer, A Requires Authentication | Published by **De Gruyter** | January 30, 2023

Highly sensitive temperature sensor using one-dimensional Bragg Reflector for biomedical applications

Ranjith B. Gowda 🖂, Preeta Sharan and Saara K.

From the journal Biomedical Engineering / Biomedizinische Technik https://doi.org/10.1515/bmt-2022-0482



Abstract

A theoretical investigation of multi-layer Bragg Reflector (BR) structure to design highly sensitive temperature sensor is proposed to measure the temperature over a wide range. Characteristic-Matrix (CM) mathematical tool is used to design and analyse the proposed temperature sensor. A 1D Distributed Bragg Reflector multi-layer structure is used to design and analyse the sensing characteristics of the proposed sensor. Periodic modulation in the Refractive-Index (RI) of the two materials, high and low, forms DBR multi-layer structure. Germanium and air are used as the two alternate materials of BR for high and low dielectric layers respectively. Parameters of many semiconductor materials, including germanium, varies with temperature. Here we have considered RI variation of germanium with the temperature to model and design the proposed sensor. A defect layer is introduced at the center of multi-layer structure to obtain the resonating mode for an incident electromagnetic wave. The sensor can detect temperature over a wide range from 100 to 550 K. A resonating mode, shifting towards different wavelength region is observed for the temperature variations. The influence of increase in the DBR layers (N) and defect cavity geometrical length (l_D) is studied. The obtained results conclude that the cavity defect length and BR layers affects the sensing parameters of the designed sensor. The obtained RI sensitivity, Q-factor, temperature sensitivity and detection limit of the sensor are 2.323 µm/RIU, 115,000, 1.18 nm/K and 9.024×10^{-6} RIU respectively. Theoretically obtained transmission spectrum was validated using Monte Carlo simulation.

Keywords: 1D photonic crystal; Bragg Reflector; characteristic matrix; multi-layer structure; refractive index; temperature sensor

CSSE | N×N Clos Digital Cross-Connect Switch Using Quantum Dot Cellular Automata (QCA)

Women Safety Using Cloud Messaging Technology

VijayaKumari.V ECE Department,The Oxford College of Engineering, Bangalore-560 068,India

ABSTRACT

Today, usages of smart phones by people have increased rapidly and hence, a smart phone can be used efficiently for personal security or various other protection purposes. The heinous incident that outraged the entire nation has wakened us to go for the safety measures and so the hosts of new apps have been developed to provide security systems to women via their phones. This paper presents women security through an Android Application for the Safety of Women and this app can be activated independently by the mobile, whenever the need arises. This app identifies the user location through GPS and sends a message using GCM comprising the current location URL to the registered and emergency contacts and also sends messages to nearby mobile users who are having this app for rescuing purpose in case of danger. This is implemented with hardware using microcontroller, GCM, GPS, buzzer and sensors.

Keywords: smart phones, nation, android, buzzer, sensors

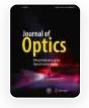
1.Introduction

The ladies in India standing in public places are facing several challenges to face over the past few thousand years. From equal standing with men in past through the low points of the medieval period to the self-promotion of equal rights by several reformers, the history of ladies in India has been eventful. A smart intelligent system is developed to solve the problems faced by women using a wrist band and spectacles used in daily life. It resembles a band incorporated with pressure switch as input which on activation provides a screaming alarm and tear gas mechanism for self defending and provides message to contacts through live video captured using the spectacles[1]. On clicking the app it identifies the location using GPS and sends message to the registered contacts every 5 minutes until the stop button is clicked. This SMS helps to find the location of the victim to be rescued safely [2]. In this system arduino is used for analysis of physiological signal with body position using the sensor such as vibration sensor and fault detection sensor. The acquisition of raw data makes arduino to function by activating GPS to send alert messages through GSM and wireless camera to capture images and video and shared to the registered contacts [3]. The ARM controller and android application are the devices connected to smart phones and are synchronized using Bluetooth which can be triggered independently[4]. In smart women safety system depicts a GPS and GSM zapper circuit based ladies security framework which gives a mix of GPS gadget particular to track the area and gives an alarms and messages a crisis circumstance [6]. Radio frequency based tracking is for helping parents to keep an eye on the women is everywhere they are. Many methods can be used to design various form of RFID which results in accurate information and better performance in power and image reading [7]. When someone going to harass she can just press button and location is sent to an SMS alert to few predefined numbers in terms of latitude and longitude[8]. The women safety device allows immediate response and focuses on providing instant protection to user by alarming sound using buzzer and the shock is protected by the shocker circuit through relay[9]. The crime against women can be brought to an end with the real time system implementation. This system helps to supports the gender equality by providing safe environment to women in the society, and allows them to work till late nights. The proposed system provides tool for intrusion detection inside the home where senior citizen, handicapped person leaving alone and after detection it takes necessary preventive measure [10]. It can be overcome by storing data onto the cloud.

2.Methodology

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS	USER
Home > Vol 21, No 3 > Pathak	Username
	Password
Bragg reflector one-dimensional multi-layer structure sensor for the detection of thyroid cancer cells	QUICK LINKS
Ranjeet Kumar Pathak, Sumita Mishra, Preeta Sharan	 Editorial Boards Reviewers
Abstract	Author Guidelines Online Submission Policy of Plagiarism Comparism
In the proposed work, a defect cavity multi-layer Bragg reflector structure is proposed theoretically to find the presence thyroid cancer cells in the given sample. The modelling, design and analysis of the sensor is performed using characteri matrix method (CMM). Proposed structure has central defect cavity with 6 pairs of low and high refractive index layers each side of the defect. To enhances the sensor sensitivity, the incident light in mid-infrared frequency range is used as input light source. The refractive index of normal and thyroid cancer cells is analysed for the performance of the sensor the solution of factor and sensitivity of the sensor design is 3729 and 2828 nm/RIU respectively. The proposed sensor best choice of optical sensor for the detection of thyroid cancer cells in the given test sample for accurate analysis in medical applications.	istic • Publication Fee • Abstracting and Indexing • Repository Policy
Keywords	Q2 CiteScore Quartile in
Bragg's reflector; characteristic matrix method; micro-cavity; photonic crystal; thyroid cancerous cells;	Electrical and Electronic Engineering
Full Text:	4.0 CiteSc
DOI: http://doi.org/10.12928/telkomnika.v21i3.24282	58th percentile Powered by Sco
Refbacks	
There are currently no refbacks.	JOURNAL CONTENT
	Search Scope
This work is licensed under a <u>Creative Commons Attribution-ShareAlike 4.0 International License</u> .	Search
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293 <u>Universitas Ahmad Dahlan</u> , 4th Campus J. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191	Browse • By Issue • By Author
Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604	• By Title
04540028	
View TELKOMNIKA Stats	

Log in


💭 Cart

Q Search

Home Journal of Optics Article

Comparative analysis and design of highperformance photonic crystal add-drop filter for optical switching

Research Article Published: 08 November 2022 Volume 52, pages 704–715, (2023) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Amita Asthana 🖂, Anil Kumar & Preeta Sharan

30 Accesses (1) 1 Citation Explore all metrics \rightarrow

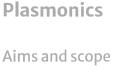
Abstract

Photonic crystal add-drop filter structures are promising technology for optical communication networks. This paper presents the design of H-shaped photonic crystal add-drop filter that consists of one straight waveguide and four arm waveguides. A ring resonator-based add-drop filter has been proposed with upper and lower waveguides for light propagation. A triangular-shaped add-drop filter has also been designed using two-dimensional photonic crystals (2D-PCs) also with high optical transmission capabilities. Numerical methods such as plane wave expansion and finite-difference time-domain

Login

Q Search

🔆 Cart


Home Plasmonics Article

Two-Dimensional Photonic Crystal Biosensor Based on Gallium Arsenide Composite Semiconductive Material for Diabetes Detection

RESEARCH Published: 08 May 2023

Volume 18, pages 1429–1440, (2023) Cite this article

Submit manuscript

Manjunatha N, Sarika Raga 🖂, Sanjay Kumar Gowre, Hameed Miyan & Preeta Sharan

320 Accesses (1) 6 Citations Explore all metrics \rightarrow

Abstract

In this study, a gallium arsenide (GaAs) composite semi-conductive material is used as rods with an air background lattice point as a photonic crystal for the detection of diabetes using urine, blood, and tear samples. The refractive index (RI) of bio-samples at various concentrations is used to determine the interaction between light and analyte. As a result, there is a good wavelength shift and light confinement in the detecting region. The photonic bandgap (PBG) and optical characteristics of light are measured using the plane wave expansion (PWE) and finite difference time domain (FDTD) techniques, respectively. The A Requires Authentication | Published by **De Gruyter** | March 28, 2023

Numerical modelling of 1-dimensional silicon photonic crystal sensor for hydrostatic pressure measurement

Ranjith B. Gowda, Preeta Sharan 🖂 and Saara Khamar

From the journal Zeitschrift für Naturforschung A https://doi.org/10.1515/zna-2022-0261

Citations | 11

Abstract

In this work, a highly sensitive hydrostatic pressure sensor using one-dimensional (1D) photonic-crystal (PC) is designed and analyzed numerically for its sensing performance. The device design has silicon (Si) sensing layer at the top to sense the applied pressure. The proposed sensor performance has been studied for its pressure sensing, by applying boundary load on the sensing layer. The structure is designed, simulated and analyzed using an FEM tool. As the applied pressure is varied from 0 MPa to 10 MPa, resonant mode shifts towards the higher wavelength region. The effect of defect cavity length and the number of periods are also analyzed to choose the optimized value which enhances the sensor performance parameters. Simulation result shows that the proposed sensor has a very high sensitivity of 250 nm/GPa and Q-factor of 11,120 with the transmission of 99.99%.

Keywords: FEM; multi-layer structure; photonic crystal; pressure sensor; transfer matrix

Corresponding author: Preeta Sharan, Department of Electronics & Communication Engineering, The Oxford College of Engineering, Bangalore, India, E-mail: sharanpreeta@gmail.com

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Log in

Cart

∑ Menu

Q Search

Home Silicon Article

Design of Two-Dimensional Photonic Crystal Defect Microcavity Sensor for Biosensing Application

Research Published: 13 April 2023

Volume 15, pages 5503-5511, (2023) Cite this article

Silicon

Aims and scope

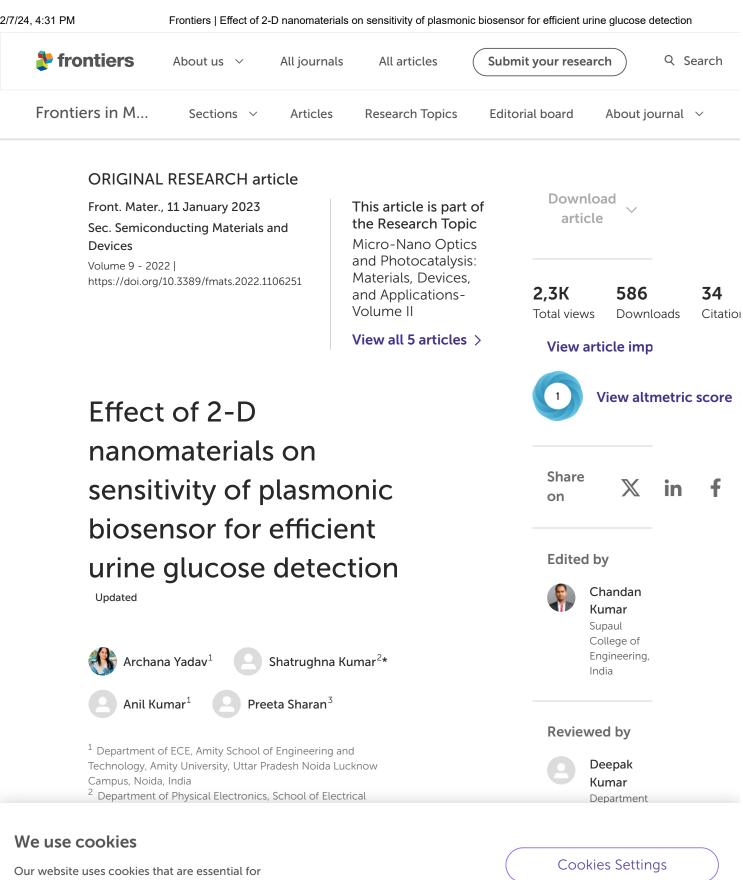
Submit manuscript

Preeta Sharan 🖂, Tahani A. Alrebdi, Abdullah Alodhayb & Anup M. Upadhyaya

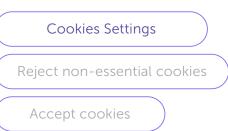
302 Accesses **4** Citations Explore all metrics \rightarrow

Abstract

In the proposed work we designed and analysed a two-dimensional photonic crystal based sensor for three different biosensing applications, including measuring the normal and abnormal levels of uric acid, glucose, and creatinine in the blood. We examine the sensitivity, Q factor, and wavelength shift of two different types of sensor cavity design. The simulation approach used a finite difference time domain method. The work has made use of electromagnetic equation propagation, MEEP tool from the Massachusetts Institute of Technology. The maximum sensitivity of the proposed sensor is 282 nm/RIU and Q factor of



Journals & Magazines > IEEE Transactions on NanoBios... > Volume: 22 Issue: 4


Highly Sensitive Bimetallic-Metal Nitride SPR Biosensor for Urine Glucose Detection

Publisher: IEE	E Cite This	PDF						
Archana Yadav	; Anil Kumar	;Preeta Sharan;Madhusudan Mishra	All Authors ••••					
49 Cites in Papers	616 Full Text Views			0	<	©	ł	Alerts
								Manage Content Alerts Add to Citation Alerts

Abstract	
Document Sections	Downl PDF
I. Introduction	
II. Device Structure	Abstract: The present study introduces a highly sensitive bimetallic SPR biosensor based on metal nitride for efficient urine
III. Theory	glucose detection. Using a BK-7 prism, Au (25 nm), Ag View more
IV. Numerical Analysis and Result Discussion	✓ Metadata Abstract:
V. Conclusion	The present study introduces a highly sensitive bimetallic SPR biosensor based on metal nitride for efficient urine glucose detection. Using a BK-7 prism, Au (25 nm), Ag (25nm), AlN (15 nm), and a biosample (urine) layer, the proposed sensor comprises of five layers. The selection of the sequence and dimensions of both metal layers is based
Authors	on their performance in a number of case studies including both monometallic and bimetallic layers. After optimizing the bimetallic layer as Au (25 nm) – Ag (25 nm), various nitride layers were used to further increase the sensitivity by
Figures	utilizing the synergistic effect of the bimetallic and metal nitride layers through case studies of several urine samples, ranging from nondiabetic to severely diabetic patients. AIN is determined to be the best suited material, and its
References	thickness is optimized to 15 nanometers. The performance of the structure has been evaluated using a visible wavelength, i.e., $\lambda=633$ nm, in order to increase sensitivity while providing room for low-cost prototyping. With the
Citations	layer parameters optimized, a significant sensitivity of 411°/RIU (Refractive Index Unit) and figure of merit (FoM) p [] F 105.38 /RIU has been achieved. The computed resolution of the proposed sensor is 4.17e-06. This study's findings
Keywords	have also been compared to some recently reported results. The proposed structure would be useful for detecting glucose concentrations, with a rapid response as measured by a substantial shift in resonance angle in SPR curves.
Metrics	
More Like This	Published in: IEEE Transactions on NanoBioscience (Volume: 22, Issue: 4, October 2023)

its operation and additional cookies to track performance, or to improve and personalize our services. To manage your cookie preferences, please click Cookie Settings. For more information on how we use cookies, please see our Cookie Policy

Log in

Q Search

🔆 Cart

Home International Journal of Information Technology Article

Simulation and excitation analysis of nano aperture-array for surface plasmon based memory applications

Original Research Published: 02 October 2022 Volume 15, pages 203–209, (2023) Cite this article

International Journal of Information Technology

Aims and scope

Submit manuscript

Srujana Ramachandra, M. V. Panduranga Rao & Preeta Sharan 🖂

63 Accesses Explore all metrics \rightarrow

Abstract

This study ponders the prospect of a Plasmon enabled optical memory device to achieve higher data transfer rates and data density. The device is based upon Silicon as a substrate, Silver metal and Silicon nitride sandwiched between them. Paper discusses simulation based excitation analysis of two design variations of a memory device labelled device 1 and device 2, focusing upon the metal layer containing Nano aperture, with an area of 250 nm² using 650 nm light source. Simulations are carried out with the help of opti-FDTD and Rsoft

Log in

 \equiv Menu

Q Search

ঢ় Cart

Home International Journal of Information Technology Article

Novel design of reversible latches using feynman gate and implementation of reversible combinational circuits

Original Research Published: 02 September 2022 Volume 14, pages 2903–2915, (2022) Cite this article

International Journal of Information Technology

Aims and scope

Submit manuscript

Amita Asthana 🔀, Anil Kumar & Preeta Sharan

5 124 Accesses 2 Citations Explore all metrics \rightarrow

Abstract

Quantum Dot Cellular Automata (QCA) technology is gaining popularity for its low power requirements, high speed and efficient miniaturization of digital circuits. Especially, digital circuits now need to be realized and investigated at quantum levels. The manuscript presents the design of several combinational and sequential logic circuits by employing reversible quantum gates such as Peres gate, Thapliyal Ranganathan (TR) gate and Feynman gate (FG) using QCA technology. The manuscript presents the novel design of various latches

IOPSCIENCE Q Journals → Books Publishing Support Q Login →

PAPER

Optofluidic photonic crystal micro sensor for enhanced detection of infectious diseases

Preeta Sharan⁶, Ghada A Khouqeer, Basma A El-Badry, Abdullah N Alodhayb, Anup M Upadhyaya and Harshada J Patil

Published 28 December 2023 • © 2023 IOP Publishing Ltd

Engineering Research Express, Volume 6, Number 1

Citation Preeta Sharan et al 2024 Eng. Res. Express 6 015012

DOI 10.1088/2631-8695/ad16a3

1. Received 26 August 2023

2. Revised 10 December 2023

3. Accepted 18 December 2023

We mallish x pbs December 2023

We and our 3 partners use cookies and other tracking technologies to improve your experience on our website. (A) Check for updates We may store and/or access information on a device and process personal data, such as your IP address and

browsing data, for personalised advertising and content, advertising and content measurement, audience <u>Method</u>: Single-anonymous research and services development. Additionally, we may utilize precise geolocation data and identification Revisions: 2 through device scanning Screened for originality? Yes

Blease note that your consent will be valid across all our subdomains. Once you give consent, a floating button Buy this article in print will appear at the bottom of your screen, allowing you to change or withdraw your consent at any time. We

Respensive respensive and are committed to providing you with a transparent and secure browsing

Sign up for new issue notifications

Customize

Accept All

Login

∑ Menu

Q Search

ঢ় Cart

Home Plasmonics Article

Improved Surface Plasmon Effect in Ag-based SPR Biosensor with Graphene and WS₂: An Approach Towards Low Cost Urine-Glucose Detection

Research Published: 15 July 2023

Volume 18, pages 2273-2283, (2023) Cite this article

Plasmonics

Aims and scope

Submit manuscript

Archana Yadav, Madhusudan Mishra 🖂, Sukanta K. Tripathy, Anil Kumar, O. P. Singh & Preeta Sharan

5 703 Accesses 32 Citations 33 Altmetric Explore all metrics \rightarrow

Abstract

Gold and silver are the two notable noble metals with wide implications in surface plasmon resonance (SPR) based sensors. Gold possesses a superior SPR phenomenon compared to silver, however, with extremely high costs. To resolve this problem, the current study proposes a new gold—free SPR biosensor design employing silver as the noble metal for efficient detection of blood glucose using urine as the biosample. The proposed design

Q Search

Login

∑ Menu

🔆 Cart

Home Journal of Optics Article

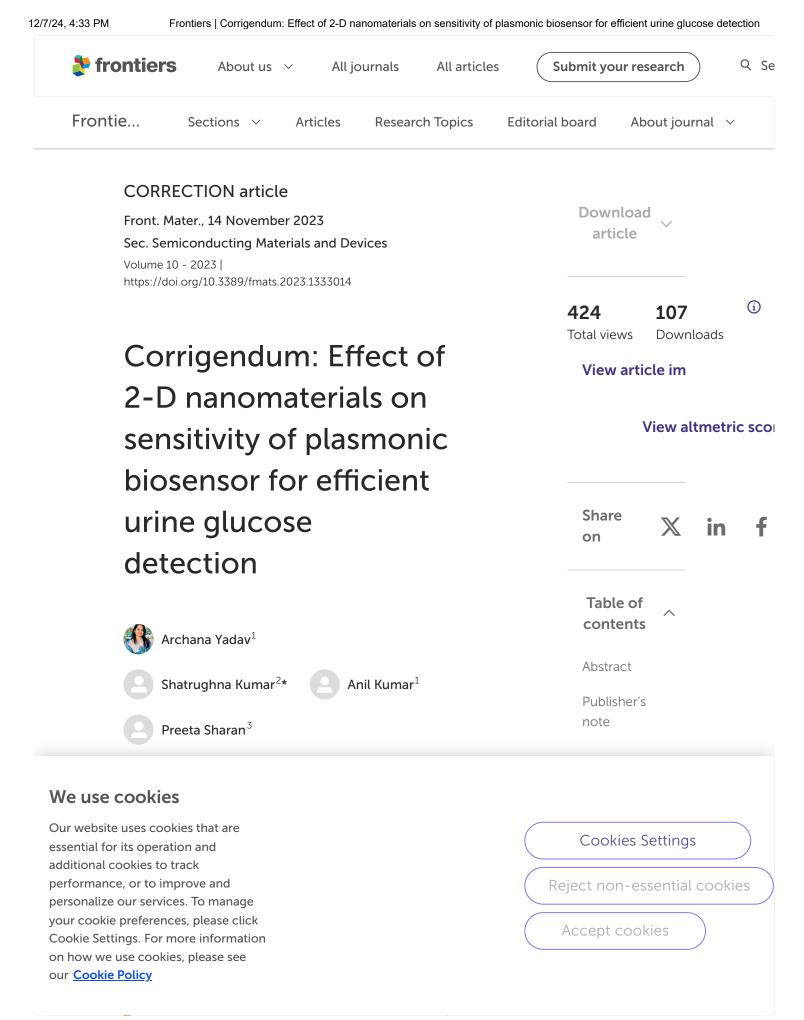
Real-time implementation of optical sensor on lab rig model for speed estimation

Research Article Published: 18 November 2023

Volume 53, pages 2460–2468, (2024) Cite this article

Journal of Optics

Aims and scope


Submit manuscript

Deepa Nagaraju, Preeta Sharan 🖂, Sneha Sharma & Srijani Chakraborty

5 108 Accesses **6** 2 Citations Explore all metrics \rightarrow

Abstract

The Indian railway traffic is increasing and is expected to increase more in the future, thus making safety a critical issue to focus on. However, there is very little work on smart monitoring with respect to railway infrastructure in India. This paper analyses this problem and proposes an optical sensor-based smart monitoring solution for railways. A fibre Bragg grating-based sensor is deployed on the sleeper of a lab train model, and an effective algorithm is proposed to successfully detect the train speed and the axle count using the sensor data. The train speed and axle count are fundamentals in the process of detecting railway faults such as derailments, wheel flats and corrugation or unbalanced loads. For a moving train, the instantaneous train speed is not readily available for monitoring purposes

∑ Menu

Q Search

Home Journal of Optics Article

Measurement model of integrated FBG sensor for beam structure

Research Article Published: 20 October 2023 Volume 53, pages 2355–2360, (2024) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Somesh Nandi, K. Chethana, T. Srinivas & Preeta Sharan 🖂

5 102 Accesses Explore all metrics \rightarrow

Abstract

Fibre Bragg grating sensors are investigated in various structural health monitoring systems. Most of these research used a variety of FBG sensors to assess the structures' temperature and strain. The FBG sensor is combined with two fixed and cantilever beam structures in the proposed study. A wide range of pressure and temperature are considered during the analysis. In different circumstances, the range of wavelength shift obtained has been evaluated. In mathematical modelling, the definition of the correlation between variables has been taken into consideration using linear regression approaches. The fixed beam model demonstrated good agreement with a *R*-squared score of 96%. For a cantilever beam, *R* squared was 88%. The obtained wavelength range of the cantilever beam is larger, ranging from 1.552 to 1.566 nm. Proposed work will enable more precise

ᆬ Cart

Ξ Menu │ Q Search

Home Plasmonics Article

Two-Dimensional Photonic Crystal Biosensor Based on Gallium Arsenide Composite Semiconductive Material for Diabetes Detection

RESEARCH Published: 08 May 2023

Volume 18, pages 1429–1440, (2023) Cite this article

Plasmonics

Aims and scope Submit manuscript

Manjunatha N, Sarika Raga 🖂, Sanjay Kumar Gowre, Hameed Miyan & Preeta Sharan

322 Accesses (1) 6 Citations Explore all metrics \rightarrow

Abstract

In this study, a gallium arsenide (GaAs) composite semi-conductive material is used as rods with an air background lattice point as a photonic crystal for the detection of diabetes using urine, blood, and tear samples. The refractive index (RI) of bio-samples at various concentrations is used to determine the interaction between light and analyte. As a result, there is a good wavelength shift and light confinement in the detecting region. The photonic bandgap (PBG) and optical characteristics of light are measured using the plane wave expansion (PWE) and finite difference time domain (FDTD) techniques, respectively. The effect of varying the radii of the biosensor's sensing rod is studied. The biosensor performance parameters obtained were a sensitivity of 821 nm/RIU, Q-factor of 16,209.680, low detection limit of 1.587×10^{-4} RIU, high figure of merit of 6300.683 RIU⁻¹,

└ Cart

Log in

Cart

∑ Menu

Q Search

Home Silicon Article

Design of Two-Dimensional Photonic Crystal Defect Microcavity Sensor for Biosensing Application

Research Published: 13 April 2023

Volume 15, pages 5503-5511, (2023) Cite this article

Silicon

Aims and scope

Submit manuscript

Preeta Sharan 🔀, Tahani A. Alrebdi, Abdullah Alodhayb & Anup M. Upadhyaya

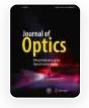
5 202 Accesses **4** Citations Explore all metrics \rightarrow

Abstract

In the proposed work we designed and analysed a two-dimensional photonic crystal based sensor for three different biosensing applications, including measuring the normal and abnormal levels of uric acid, glucose, and creatinine in the blood. We examine the sensitivity, Q factor, and wavelength shift of two different types of sensor cavity design. The simulation approach used a finite difference time domain method. The work has made use of electromagnetic equation propagation, MEEP tool from the Massachusetts Institute of Technology. The maximum sensitivity of the proposed sensor is 282 nm/RIU and Q factor of

Log in

💭 Cart


∑ Menu

Q Search

Home Journal of Optics Article

Comparative analysis and design of highperformance photonic crystal add-drop filter for optical switching

Research Article Published: 08 November 2022 Volume 52, pages 704–715, (2023) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Amita Asthana 🔀, Anil Kumar & Preeta Sharan

5 230 Accesses 1 Citation Explore all metrics \rightarrow

Abstract

Photonic crystal add-drop filter structures are promising technology for optical communication networks. This paper presents the design of H-shaped photonic crystal add-drop filter that consists of one straight waveguide and four arm waveguides. A ring resonator-based add-drop filter has been proposed with upper and lower waveguides for light propagation. A triangular-shaped add-drop filter has also been designed using two-dimensional photonic crystals (2D-PCs) also with high optical transmission capabilities. Numerical methods such as plane wave expansion and finite-difference time-domain

Early Detection of The Glaucoma and Other Intra-Ocular Pressure Elevation Diseases Using Hardware Efficient Machine Learning Approach

Author(s)	P. Suresh Venugopal, K. Remya Bharathy, Ravindrakumar Selvaraj
Country	India
Abstract	Nowadays, Glaucoma is one of the chronical diseases that entirely make the human eyes into the blindness. This disease is a consequence of an accumulation of aqueous humor in the eye due to a defect of its drainage system. This condition progressively elevates the intra-ocular pressure (IOP), affecting the optic nerve and resulting in permanent blindness if left untreated. In early stages, the glaucoma may be an asymptomatic. Hence, the proposed method is designed to detect the early stage of the glaucoma. This can be done by measuring the cup to disk ratio. For that, the proposed image processing algorithm is constrained with the three basic steps such as preprocessing, feature extraction and classification. In classification stage, we employ the SVM classifier to classify the normal and glaucoma images. The method is found to be efficient in hardware implementation when compared to other methods. The overall implementation will be held in the Matlab supporting environment.
Keywords	Glaucoma, SVM, Intraocular pressure, machine learning,
Field	Computer > Artificial Intelligence / Simulation / Virtual Reality
Published In	Volume 5, Issue 5, September-October 2023
Published On	2023-09-22
Cite This	Early Detection of The Glaucoma and Other Intra-Ocular Pressure Elevation Diseases Using Hardware Efficient Machine Learning Approach - P. Suresh Venugopal, K. Remya Bharathy, Ravindrakumar Selvaraj - IJFMR Volume 5, Issue 5, September-October 2023. DOI 10.36948/ijfmr.2023.v05i05.6685
DOI	https://doi.org/10.36948/ijfmr.2023.v05i05.6685
Short DOI	https://doi.org/gssfmt

🔀 View / Download PDF File

Share this

Volume 23 Issue 2 2023

Bipolar Valued Vague Generalized Semipreclosed Sets In Bipolar Valued Vague

- 1. Topological Space
 - K.KAVITHA

Madurai Gandhi N.M.R Subbaraman College for Women(Affiliated to Madurai Kamaraj

University, Madurai), Madurai, Tamilnadu.

G.RAMKUMAR

Arul Anandar College, Karumathur, Madurai, Tamilnadu, India.

Page No: 1-9

DOI:10.37896/JBSV23.2/1751

Implementation Of Smart Energy Meter With Power Management Using Low Power

2. Embedded Controller

Umayal Muthu.V, Dr.A. Shunmugalatha, Kowsika.B

VCET, Madurai

Page No: 10-15

DOI:10.37896/JBSV23.2/1752

3. Mathematics On Agriculture; Plant Science And Number System

R. BHAVANI, P.NIVETHA
Kamban College of Arts and Science for Women.
Page No: 16-23
DOI:10.37896/JBSV23.2/1753

Advances and Challenges in Science and Technology

Vol. 9

Edited by Prof. Shi-Hai Dong

Comparison of Face Recognition Using PCLDA and Neural Network V. Vijaya Kumari

Advances and Challenges in Science and Technology Vol. 9, 30 November 2023, Page 139-152 https://doi.org/10.9734/bpi/acst/v9/6966C (https://doi.org/10.9734/bpi/acst/v9/6966C) Published, 2023-11-30

Review History 🌐 Cite 🖌 Statistics 📖 Share

Abstract

Facial recognition is a complex multidimensional structure that demands sophisticated computing techniques for authent cation purpose. In this paper, we introduce the Integral Normalized Gradient Image (INGI) algorithm with various normalizing stages. The system comprises a novel illumination insensitive preprocessing method, a hybrid Fourier based feature extraction and matching process. The Pre-processing method is grounded in the analysis of the facial imaging model, considering

intrinsic and extrinsic factors of the human face. Feature extraction encompasses hybrid Fourier features extracted from different frequency bands and multiple face models. By deriving Fourier features from three Fourier domains and three distinct frequency bandwidths, we acquired additional complementary features. These features are individually classified using Principal Component and Linear Discriminant Analysis (PCLDA). This approach enables in analyzing a face image from the various viewpoints for identity recognition. Furthermore, we propose multiple face models based on different eye positions with a same image size. This contributes significantly to enhancing the performance of the proposed system. Recognition is achieved through Euclidean Distance and Neural Network based classifier, resulting in a recognition accuracy of approximately 89.23% for the Euclidean Distance classifier-based model and 93.40% for Back Propagation Neural Network Classifier.

12/7/24, 4:38 PM BALLORG: State-of-the-art Image Restoration using Block-augmented Lagrangian and Low-rank Gradients - IEIE Transactions on ...

- 대한전자공학회
- IEIE Transactions on Smart Processing & Computing 학술저널
- IEIE Transactions on Smart Processing & Computing Vol.12 No.1
- 2023.2 1 8 (8page)
- DOI : 10.5573/IEIESPC.2023.12.1.1

저자정보

- Laya Tojo (The Oxford College of Engineering)
- Manju Devi (The Oxford College of Engineering)
- <u>Vivek Maik (SRM Institute of Science and Technology</u>)
- <u>Gurushankar (South Ural State University</u>)

이용수		
7		
내서재		
0		
인용하기		
✓ 공유		
내서재 담기 내서재에 추가		
되었습니다. 내서재에서		
삭제되었습니다.		
🛛 📮 내서재 담기 🛛 내서재에 추가		
되었습니다. 내서재에서		
삭제되었습니다. 达 다운받기	AI뷰어보기	🌼 논문보기

초록·키워드

<u>오류제보하기</u>

In this paper, we propose a blind image deblurring algorithm using block-augmented Lagrangian and low-rank priors (BALLORG) as a non-learning method that can give better results without the complexity of learning-based methods. The proposed algorithm achieves faster convergence within 20 iterations than conventional methods. Regularization priors are used in the form of gradients and sparse low-rank matrices, and recursive rank improvements result in better deblurring performance. The steepest descent in minimization is maintained through weight selection for penalty and regularization parameters. The block processing introduces local and global optimization, leading to better visual quality outputs. The proposed method has excellent performance in terms of the PSNR, SSIM, and FSIM matrix, which is on par with or better than that of other state-of-the-art learning and non-learning-based approaches.

#Image restoration #BALLORG #Low-rank Prior #Augmented Lagrangian #Penalty methods #Lagrangian multipliers #Derivative prior #Block sparsity #III posed optimization #Constrained optimization

목차

Abstract

- 1. Introduction
- 2. Related Work
- 3. The Proposed Scheme
- 4. Experimental Results
- 5. Conclusion References

참고문헌 (23)

<u>참고문헌 신청</u>

 H. Zheng, "A Survey on Single Image Deblurring," 2021 2nd International Conference on Computing and Data Science (CDS), 2021, pp. 448-452,

 Article(CrossRef Link)
 M. El Helou and S. Süsstrunk, "Blind Universal Bayesian Image Denoising With Gaussian Noise Level Learning,"

 IEEE Transactions on Image Processing, vol. 29, pp. 4885-4897, 2020, Article(CrossRef Link)
 V. Maik, Dohee Cho, Jeongho Shin, and

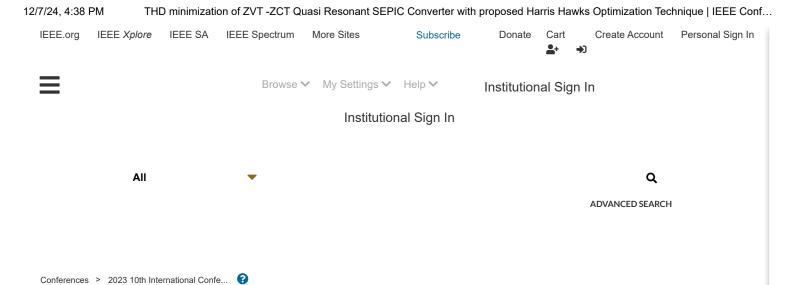
ScienceDirect[®]

Engineering Failure Analysis

Volume 138, August 2022, 106376

Real time implementation of fiber Bragg grating sensor in monitoring flat wheel detection for railways

Suchandana Mishra a 🖾 , Preeta Sharan b 😤 🖾 , K. Saara a 🖾


Show more 🗸

https://doi.org/10.1016/j.engfailanal.2022.106376 ス Get rights and content ス

Highlights

- Rail-wheel analysis of the train.
- Real time monitoring and detection of the train wheel passage using <u>optical sensor fiber Bragg grating sensor</u>.
- Positions of grating sensors installed on the rail.
- Time domain and <u>frequency spectrum analysis</u> for the strain data induced on the rail when train passes by, to detect wheel flats.
- Reflection spectrum analysis for good wheel and bad wheel of a passenger train.

THD minimization of ZVT -ZCT Quasi Resonant SEPIC Converter with proposed Harris Hawks Optimization Technique

Publisher: IEEE Cite This 🔓 PDF Nisha C Rani; N. Amuthan All Authors ••• Text Views

Abstract

Document Sections

I. Introduction

49

Full

- II. The Proposed System Block Diagram Description
- III. Optimization Technique
- IV. Pulse Control of Voltage Source Inverter Using **Optimization Technique**
- V. Results and Discussion

Show Full Outline -

Authors

Figures

References

Keywords

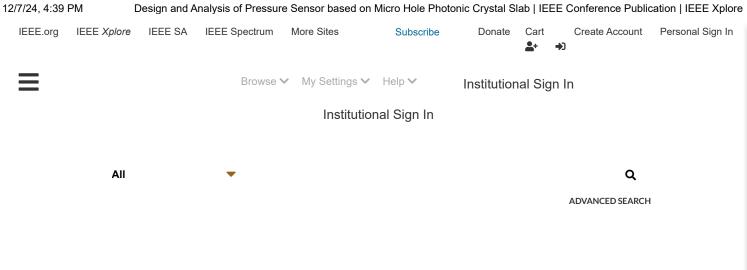
Metrics

Abstract:

لحر Down

In this paper ZVT (Zero Voltage Transition)-ZCT (Zero Current Transition) based Quasi Resonant SEPIC (QRSEPIC) converter with a Voltage Source inverter (VSI) using optimi... View more

 \bigcirc


Alerts

Manage Content Alerts Add to Citation Alerts

Metadata Abstract:

In this paper ZVT (Zero Voltage Transition)-ZCT (Zero Current Transition) based Quasi Resonant SEPIC (QRSEPIC) converter with a Voltage Source inverter (VSI) using optimization algorithm is proposed. The proposed converter uses solar energy as its input, which is a sustainable form of energy. In this paper special attention is paid to pulse width modulation (PWM) techniques, which aim to reduce the harmonic content. The harmonics are controlled due to the switching techniques. Rigorous work has been done for the reduction of harmonic content with various algorithms and optimization technique. This paper suggests optimization control technique to generate the PWM pulses, based on Harris Hawks Optimization algorithm to minimize the objective function. For this switching control of the proposed QRSEPIC converter, the system performance is improved, and Harmonic distortion is controlled. Further computation is done for the enhancement of efficiency. Simulation studies were carried out with MATLAB/Simulink for photovoltaic systems, and it was observed that the QRSEPIC with Harris Hawks algorithm gave better results compared to other optimization methods. The proposed method achieves an efficiency of 99.01 percentage and the reduction in THD to 0.832 percentage.

Published in: 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom)

Conferences > 2023 10th International Confe...

Design and Analysis of Pressure Sensor based on Micro Hole Photonic Crystal Slab

 Publisher: IEEE
 Cite This
 PDF

 Preetam Ambudkar ; Anup M Upadhayaya ; Preeta Sharan ; Nisha C Rani
 All Authors •••

 6
 <</td>
 ©

Abstract

Document \$	Sections
-------------	----------

- I. Introduction
- II. Theory

Full Text Views

- III. Design and Methodology
- IV. Results and Discussion
- V. Conclusion
 - Authors
 - Figures
 - References
 - Keywords
 - -
 - Metrics

```
More Like This
```

Abstract:

Down

This study presents a novel photonic crystal (PC) pressure sensor design and three-dimensional (3D) modeling and simulation for three different structures. A 2D PC slab b... **View more**

✓ Metadata

Abstract:

This study presents a novel photonic crystal (PC) pressure sensor design and three-dimensional (3D) modeling and simulation for three different structures. A 2D PC slab based on silicon is used to implement the device on a SiO2 substrate. Using Ansys Workbench and the Rsoft Optical tool, strain/stress simulations, as well as spectrum simulations, are carried out. In this study, the deformation of various structures, including rectangular, circular, and square diaphragms, as well as variations in refractive index are taken into account when calculating the sensitivity of the suggested pressure sensor. The numerical findings demonstrate that when pressure is applied, the refractive index fluctuations increase the transmission spectrum's resonant wavelength while the deformation factor decreases it. It has been demonstrated that there is a linear relationship between the applied pressure and the intended micro-resonant cavity's wavelength. The square diaphragm has shown maximum sensitivity compared to other structures. For the minimum detectable applied pressure of 0.5 Pa, the simulation result shows that for the three types of datagrams rectangle, square, and circular it is found that there is a distinct shift in wavelength. For the circular diaphragm's shift in wavelength is 742 µm, whereas the rectangle and square observed shift in wavelength is 956 µm and 1016 µm respectively. This can be applied in biomedical applications. The proposed sensor system has shown feasibility for future fabrication.

12/7/24, 4:39 PM Design and Implement a Quasi-resonant Cuk Converter for Photovoltaic Applications - IEIE Transactions on Smart Processing & C...

- 대한전자공학회
- IEIE Transactions on Smart Processing & Computing 학술저널
- IEIE Transactions on Smart Processing & Computing Vol.12 No.5
- 2023.10 448 455 (8page)
- DOI : 10.5573/IEIESPC.2023.12.5.448

저자정보

- Nisha C. Rani (Visvesvaraya Technological University)
- <u>N. Amuthan (Visvesvaraya Technological University)</u>

이용수
7
내서재
0
인용하기
< 공유
내서재 담기 내서재에 추가
되었습니다. 내서재에서
삭제되었습니다.
🛛 📕 내서재 담기 🛛 내서재에 추가
되었습니다. 내서재에서
삭제되었습니다. <mark> ▲</mark> 다운받기 AI뷰어보기 □ 논문보기

초록·키워드

<u>오류제보하기</u>

Solar energy has emerged as a growing source of alternative electrical energy in the new century because of the reliability, improvements, and efficiency in photovoltaic (PV) systems. In a PV system, maximum power point tracking (MPPT) is a significant feature because a set of conditions in PV system power is maximized, and thereby, array efficiency increases. In this article, a quasi-resonant Cuk-converter (QRCC)-based voltage source inverter (VSI) is proposed for application to large-scale photovoltaic generators. The quasi-resonant Cuk converter is built on zero voltage transition (ZVT) and zero current transition (ZCT) strategies, designing an optimization technique based on a VSI that eliminates harmonics. Through simulation related to MPPT controllers, the QRCC is achieved, feeding the load through the VSI to minimize harmonics. The results show that the proposed VSI, based on Harris hawks optimization, reduces network harmonics, and those results are compared to the quasi-resonant single-ended primary inductance converter (QRSEPIC).

전체보기

<u>#Quasi-resonant cuk converter</u> <u>#Photovoltaic (PV)</u> <u>#Voltage source inverter</u> <u>#Harris hawks optimization</u> <u>#Grid</u>

목차

Abstract

- 1. Introduction
- 2. Proposed System Description
- 3. Optimization Problem Formulation
- 4. Simulation Results and Discussion
- 5. Conclusion
- References

참고문헌 (31)

<u>참고문헌 신청</u>

Podder, Amit Kumer, Naruttam Kumar Roy, and Hemanshu Roy Pota. "MPPT methods for solar PV systems: a critical review based on tracking nature." IET Renewable Power Generation 13, no. 10 (2019): 1615-1632, Article (CrossRef Link). Google Scholar De Brito, Moacyr Aureliano Gomes, Luigi Galotto, Leonardo Poltronieri Sampaio, Guilherme de Azevedo e Melo, and Carlos Alberto Canesin. "Evaluation of the main MPPT techniques for photovoltaic applications." IEEE transactions on industrial electronics 60, Google Scholar Salman, Salman, Xin Ai, and Zhouyang Wu. "Design of a P-&-O algorithm

Log in

Q Search

🔆 Cart

Home International Journal of Information Technology Article

Grid connected PV based on quasi resonant zeta converter with Harris Hawk optimization algorithm for the implementation of PI controller

Original Research Published: 24 November 2023

Volume 16, pages 321-327, (2024) Cite this article

International Journal of Information Technology

Aims and scope


Submit manuscript

Nisha C. Rani 🗹 & N. Amuthan

91 Accesses (1) 2 Citations Explore all metrics \rightarrow

Abstract

In this paper the proposed Quasi Resonant Zeta converter is used to reduce the switching losses. Here Input of the converter is connected to the Photovoltaic (PV). The main aim of this paper is to reduce the converter switching losses and grid side harmonics. Here the Maximum Power Point Tracking (MPPT) is used to control the Quasi resonant converter, ZVT (Zero voltage Transition) and ZCT (Zero Current Transition) are applied to the converter.

THD minimization of ZVT -ZCT Quasi Resonant SEPIC Converter with proposed Harris Hawks Optimization Technique

Publisher: IEEE Cite This 🔓 PDF Nisha C Rani; N. Amuthan All Authors ••• Text Views

Abstract

Document Sections

I. Introduction

49

Full

- II. The Proposed System Block Diagram Description
- III. Optimization Technique
- IV. Pulse Control of Voltage Source Inverter Using **Optimization Technique**
- V. Results and Discussion

Show Full Outline -

Authors Figures

References

Keywords

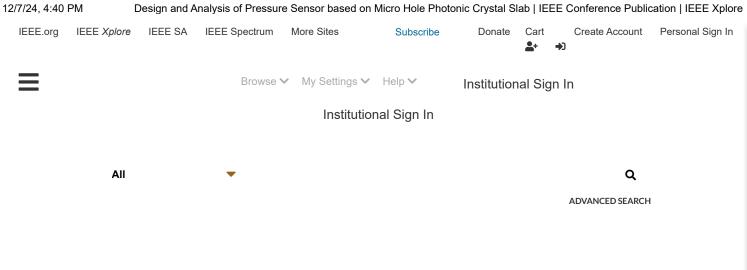
Metrics

Abstract:

لحر Down

In this paper ZVT (Zero Voltage Transition)-ZCT (Zero Current Transition) based Quasi Resonant SEPIC (QRSEPIC) converter with a Voltage Source inverter (VSI) using optimi... View more

 \bigcirc


Alerts

Manage Content Alerts Add to Citation Alerts

Metadata Abstract:

In this paper ZVT (Zero Voltage Transition)-ZCT (Zero Current Transition) based Quasi Resonant SEPIC (QRSEPIC) converter with a Voltage Source inverter (VSI) using optimization algorithm is proposed. The proposed converter uses solar energy as its input, which is a sustainable form of energy. In this paper special attention is paid to pulse width modulation (PWM) techniques, which aim to reduce the harmonic content. The harmonics are controlled due to the switching techniques. Rigorous work has been done for the reduction of harmonic content with various algorithms and optimization technique. This paper suggests optimization control technique to generate the PWM pulses, based on Harris Hawks Optimization algorithm to minimize the objective function. For this switching control of the proposed QRSEPIC converter, the system performance is improved, and Harmonic distortion is controlled. Further computation is done for the enhancement of efficiency. Simulation studies were carried out with MATLAB/Simulink for photovoltaic systems, and it was observed that the QRSEPIC with Harris Hawks algorithm gave better results compared to other optimization methods. The proposed method achieves an efficiency of 99.01 percentage and the reduction in THD to 0.832 percentage.

Published in: 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom)

Conferences > 2023 10th International Confe...

Design and Analysis of Pressure Sensor based on Micro Hole Photonic Crystal Slab

 Publisher: IEEE
 Cite This
 PDF

 Preetam Ambudkar ; Anup M Upadhayaya ; Preeta Sharan ; Nisha C Rani
 All Authors •••

 59
 ©

Abstract

Document Sections

I. Introduction

II. Theory

Full Text Views

III. Design and Methodology

IV. Results and Discussion

V. Conclusion

Authors

Figures

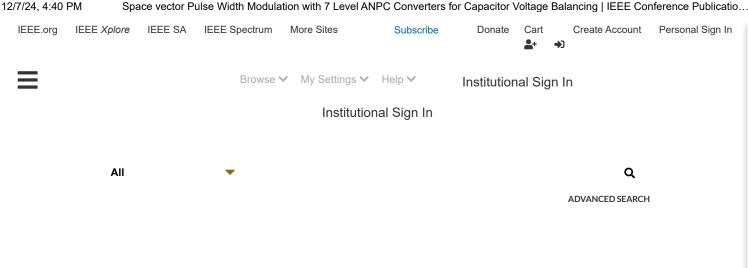
References

Keywords

Metrics

More Like This

Abstract:


Down

This study presents a novel photonic crystal (PC) pressure sensor design and three-dimensional (3D) modeling and simulation for three different structures. A 2D PC slab b... **View more**

Metadata

Abstract:

This study presents a novel photonic crystal (PC) pressure sensor design and three-dimensional (3D) modeling and simulation for three different structures. A 2D PC slab based on silicon is used to implement the device on a SiO2 substrate. Using Ansys Workbench and the Rsoft Optical tool, strain/stress simulations, as well as spectrum simulations, are carried out. In this study, the deformation of various structures, including rectangular, circular, and square diaphragms, as well as variations in refractive index are taken into account when calculating the sensitivity of the suggested pressure sensor. The numerical findings demonstrate that when pressure is applied, the refractive index fluctuations increase the transmission spectrum's resonant wavelength while the deformation factor decreases it. It has been demonstrated that there is a linear relationship between the applied pressure and the intended micro-resonant cavity's wavelength. The square diaphragm has shown maximum sensitivity compared to other structures. For the minimum detectable applied pressure of 0.5 Pa, the simulation result shows that for the three types of datagrams rectangle, square, and circular it is found that there is a distinct shift in wavelength. For the circular diaphragm's shift in wavelength is 742 µm, whereas the rectangle and square observed shift in wavelength is 956 µm and 1016 µm respectively. This can be applied in biomedical applications. The proposed sensor system has shown feasibility for future fabrication.

Conferences > 2023 3rd International Confer...

Space vector Pulse Width Modulation with 7 Level ANPC Converters for Capacitor Voltage Balancing

Publisher: IEEE Cite This

🏓 PDF

Sabari L Uma Maheswari ; Resna S R ; R. Yalini ; Anithamary M ; R. Pandian ; Gowrishankar P All Authors •••

Manage Content Alerts Add to Citation Alerts

I. Introduction

85

Full Text Views

- II. Proposed System
- III. Modular Multilevel Converter (MMC)
- >> Conclusion

Authors

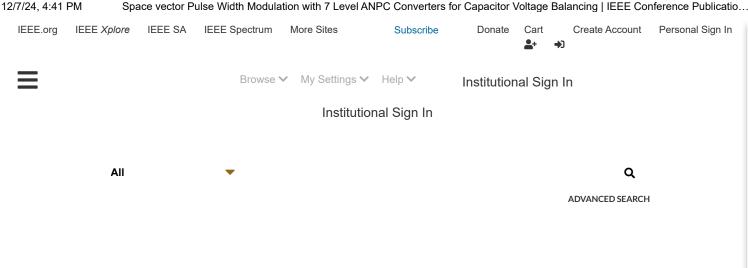
- Figures
- References

Keywords

Metrics

More Like This

Abstract:


Down

The seven-level flowing, dynamic, unbiased, point-cinched converter of the half-breed. The converter geography is made up of an H-span for each stage and a three-level Ac... **View more**

Metadata

Abstract:

The seven-level flowing, dynamic, unbiased, point-cinched converter of the half-breed. The converter geography is made up of an H-span for each stage and a three-level Active Neural Point Clamped (ANPC) converter. Through the selection of the converter's exchanging circumstances, the voltage of the H-span is ferociously maintained with fundamental force. With extensive geographic reenactment effects, working ethics, voltage regulating techniques, and converter restrictions are jointly studied. By directing the exchanging obligation patterns of 2 PWM signals, which veer the activity event of excess exchanging states in each exchanging cycle, the voltage slantingly the flying capacitor is also synchronised. There are recreation and trial grades available to demonstrate the effectiveness of this tactic. a method for altering the voltage of capacitors, including flying and dc-interface capacitors, for the 7 level ANPC (7L-ANPC) converters. 7L-ANPC converters are worked at major repetition rates whereas various switches are worked with a constant exchanging repetition rate. to test the connection among the zero grouping voltage and the typical imperial point current. The impartial point potential is meant to be controlled by an ideal zero-arrangement voltage. Altering the trading responsibility cycles also synchronises the voltage across the flying capacitor. Every time a recurrent swapping state occurs throughout an exchange period, it is altered. It is possible to test the validity of this tactic using simulation and exploratory data.

Conferences > 2023 3rd International Confer...

Space vector Pulse Width Modulation with 7 Level ANPC Converters for Capacitor Voltage Balancing

Publisher: IEEE Cite This

🏓 PDF

Sabari L Uma Maheswari ; Resna S R ; R. Yalini ; Anithamary M ; R. Pandian ; Gowrishankar P All Authors •••

Manage Content Alerts Add to Citation Alerts

I. Introduction

85

Full Text Views

- II. Proposed System
- III. Modular Multilevel Converter (MMC)
- >> Conclusion

Authors

- Figures
- References

Keywords

Metrics

More Like This

Abstract:

Down

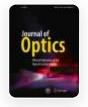
The seven-level flowing, dynamic, unbiased, point-cinched converter of the half-breed. The converter geography is made up of an H-span for each stage and a three-level Ac... **View more**

Metadata

Abstract:

The seven-level flowing, dynamic, unbiased, point-cinched converter of the half-breed. The converter geography is made up of an H-span for each stage and a three-level Active Neural Point Clamped (ANPC) converter. Through the selection of the converter's exchanging circumstances, the voltage of the H-span is ferociously maintained with fundamental force. With extensive geographic reenactment effects, working ethics, voltage regulating techniques, and converter restrictions are jointly studied. By directing the exchanging obligation patterns of 2 PWM signals, which veer the activity event of excess exchanging states in each exchanging cycle, the voltage slantingly the flying capacitor is also synchronised. There are recreation and trial grades available to demonstrate the effectiveness of this tactic. a method for altering the voltage of capacitors, including flying and dc-interface capacitors, for the 7 level ANPC (7L-ANPC) converters. 7L-ANPC converters are worked at major repetition rates whereas various switches are worked with a constant exchanging repetition rate. to test the connection among the zero grouping voltage and the typical imperial point current. The impartial point potential is meant to be controlled by an ideal zero-arrangement voltage. Altering the trading responsibility cycles also synchronises the voltage across the flying capacitor. Every time a recurrent swapping state occurs throughout an exchange period, it is altered. It is possible to test the validity of this tactic using simulation and exploratory data.

Log in


Cart

Q Search

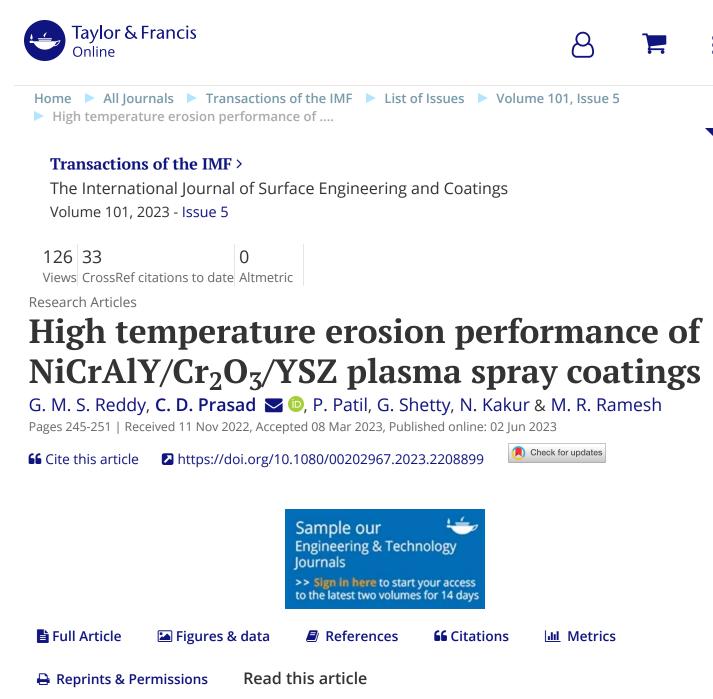
Home Journal of Optics Article

Implementation of digital differentiator and digital integrator using quantum dot cellular automata

Research Article Published: 06 January 2023 Volume 52, pages 1867–1878, (2023) Cite this article

Journal of Optics

Aims and scope


Submit manuscript

Preeta Sharan 🖂, Anup M. Upadhyaya & Manpreet Singh Manna

5 192 Accesses 2 Citations Explore all metrics \rightarrow

Abstract

Current CMOS (Complementary metal—oxide—semiconductor) technology is no longer constrained in scaling by short channel effects. The semiconductor industry has developed a number of substitute technologies, including quantum-dot cellular automata, to get around these restrictions (QCA). In this study, a novel technique for developing digital differentiators and integrators is presented, employing QCA Technology as a key component. In order to design the digital differentiator focus has been given on no recursive simple tapped delay line differentiator called first difference differentiator and central

ABSTRACT

The current investigation's objective was to assess the air jet erosion tester's ability to measure the erosive behaviour of plasma sprayed coatings on titanium-15 alloy. 65% NiCrAlY, 30% Cr₂O₃, and 5% YSZ make up the coating's chemical composition. A study of microstructure and phases was carried out. Microhardness and adhesive strength have both been measured in this work. With impact angles of 30° and 90° at 300°C, 500°C, and 700°C, Al₂O₃ erodent was utilised in a solid particle erosion test. An optical

Q

Log in

💭 Cart

∑ Menu

Q Search

Home JOM Article

Investigation of High-Temperature Erosion Behavior of NiCrAlY/TiO₂ Plasma Coatings on Titanium Substrate

Advanced Functional and Structural Thin Films and Coatings Published: 22 May 2023 Volume 75, pages 3317–3323, (2023) Cite this article

JOM

Aims and scope

Submit manuscript

<u>G. Madhu Sudana Reddy, C. Durga Prasad</u> ∑, <u>Shanthala Kollur</u>, <u>Avinash Lakshmikanthan</u>, <u>R.</u> <u>Suresh Kumar</u> & <u>C. R. Aprameya</u>

222 Accesses Explore all metrics \rightarrow

Abstract

The current study examines the erosive behaviour of a 65% NiCrAlY + 35% TiO₂ plasmasprayed coating on titanium-15 substrate at various temperatures. X-ray diffraction and scanning electron microscopy were used to characterize the coating. We assessed the coating's porosity, microhardness, surface abrasiveness, and adhesive power. At impact angles of 30° and 90°, solid particle erosion studies were conducted at various temperatures of 300°C, 500°C, and 700°C. The Al₂O₃ erodent was used in the hot air jet erosion tester to

SPRINGER NATURE Link

Log in

Cart

∑ Menu

Q Search

Home Silicon Article

Design of Two-Dimensional Photonic Crystal Defect Microcavity Sensor for Biosensing Application

Research Published: 13 April 2023

Volume 15, pages 5503–5511, (2023) Cite this article

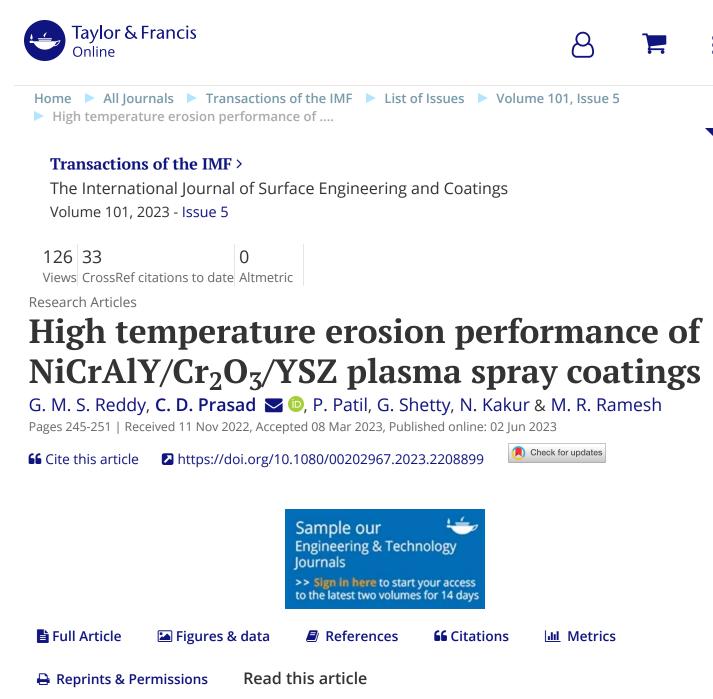
Silicon

Aims and scope

Submit manuscript

Preeta Sharan 🔀, Tahani A. Alrebdi, Abdullah Alodhayb & Anup M. Upadhyaya

5 202 Accesses **4** Citations Explore all metrics \rightarrow


Abstract

In the proposed work we designed and analysed a two-dimensional photonic crystal based sensor for three different biosensing applications, including measuring the normal and abnormal levels of uric acid, glucose, and creatinine in the blood. We examine the sensitivity, Q factor, and wavelength shift of two different types of sensor cavity design. The simulation approach used a finite difference time domain method. The work has made use of electromagnetic equation propagation, MEEP tool from the Massachusetts Institute of Technology. The maximum sensitivity of the proposed sensor is 282 nm/RIU and Q factor of 12/7/24, 4:42 PM

Microstructure, mechanical and wear properties of SiC and Mo reinforced NiCr microwave cladding: Advances in Materials and Pro...

The NiCrMoSiC composite cladding on Titan-31 base alloy was produced using a hybrid microwave heating process. The produced claddings were examined for microstructural, phase analysis, microhardness, and surface roughness using suitable techniques. The linear reciprocator ball on plate wear test was conducted using a static alumina indenter on microwave cladding. Studies have been done on track specifications for friction and

ABSTRACT

The current investigation's objective was to assess the air jet erosion tester's ability to measure the erosive behaviour of plasma sprayed coatings on titanium-15 alloy. 65% NiCrAlY, 30% Cr₂O₃, and 5% YSZ make up the coating's chemical composition. A study of microstructure and phases was carried out. Microhardness and adhesive strength have both been measured in this work. With impact angles of 30° and 90° at 300°C, 500°C, and 700°C, Al₂O₃ erodent was utilised in a solid particle erosion test. An optical

Q

IOPscience

IOPSCIENCE Q

Journals 🔻

Books Publishing Support

🕒 Login 🖵

PAPER

Optofluidic photonic crystal micro sensor for enhanced detection of infectious diseases

Preeta Sharan⁶, Ghada A Khouqeer, Basma A El-Badry, Abdullah N Alodhayb, Anup M Upadhyaya and Harshada J Patil

Published 28 December 2023 • © 2023 IOP Publishing Ltd

Engineering Research Express, Volume 6, Number 1

Citation Preeta Sharan et al 2024 Eng. Res. Express 6 015012

DOI 10.1088/2631-8695/ad16a3

1. Received 26 August 2023

2. Revised 10 December 2023

3. Accepted 18 December 2023

We reallish or beien and a 2023

We and our 3 partners use cookies and other tracking technologies to improve your experience on our website. Check for updates We may store and/or access information on a device and process personal data, such as your IP address and

browsing data, for personalised advertising and content, advertising and content measurement, audience <u>Method</u>: Single-anonymous research and services development. Additionally, we may utilize precise geolocation data and identification Revisions: 2 through device scanning Screened for originality? Yes

Blease note that your consent will be valid across all our subdomains. Once you give consent, a floating button Buy this article in print will appear at the bottom of your screen, allowing you to change or withdraw your consent at any time. We

Respectively References and are committed to providing you with a transparent and secure browsing

Sign up for new issue notifications

Customize

Accept All

< Back	
Advertise	

Advances in Materials Science and Engineering / Volume 2022, Issue 1 / 7886722

Research Article	ට් Open Access	(i) (i)
------------------	----------------	---------

[Retracted] Effects of Polypropylene Waste Addition as Coarse Aggregates in Concrete: Experimental Characterization and Statistical Analysis

Retraction(s) for this article >

Retracted: Effects of Polypropylene Waste Addition as Coarse Aggregates in Concrete: Experimental Characterization and Statistical Analysis

Advances in Materials Science and Engineering

Volume 2024, Issue 1, Advances in Materials Science and Engineering | First Published online: January 9, 2024

D. C. Naveen, K. Naresh 🔀, B. S. Keerthi Gowda, Madhu Sudana Reddy G, C. Durga Prasad, Ragavanantham Shanmugam

First published: 08 November 2022 https://doi.org/10.1155/2022/7886722 Citations: 26

Academic Editor: Qian Chen

This article is part of Special Issue: Advanced Functional Graded Materials: Processing and Applications

Abstract

In recent times, thermoplastic waste materials are being extensively used as fine and coarse aggregates in the concrete mix as an environmentally friendly construction material. This study aims at utilizing polypropylene (PP) as a partial substitute for the conventional coarse aggregates in M30 grade concrete. The different replacement levels of coarse aggregates such as 0%, 20%, 40%, and 60% by weight were used in concrete. Sieve analysis, specific gravity, and water absorption tests were performed in all replacement levels of aggregates. The mechanical (compressive and split tensile tests) tests were conducted after 3, 14, and 28 days. The change in mechanical properties of concrete with the addition of different weight proportions of plastics was studied experimentally. Further, experimental values were

Research Article

Seismic Behaviour of High Rise Structure with Plan Irregularity

Shivanand C.G¹, Charan M Kudtarkar², Dhanyashree G Bhandarkar³ Prakash N⁴

Assistant Professor, Department of Civil Engineering, The Oxford College of Engineering, Bangalore, Karnataka, India^{1,4} PG student, Department of Civil Engineering, The Oxford College of Engineering, Bangalore, Karnataka, India^{2,3}

Abstract:

The objective of this paper is to investigate various plan irregularities in buildings during seismic events using analytical methods. The study encompasses different structural systems, with particular emphasis on the dual system, to assess its impact on various irregularities. The analysis primarily focuses on the variations in displacements within the structural systems. The analyses conducted in this study aim to determine the seismic performance of high-rise buildings and evaluate the influence of structural irregularities on factors such as stiffness, strength, mass, and their combinations. By considering these factors, the researchers seek to understand how different irregularities affect the overall response of the buildings to seismic forces.

Keywords: Plan Irregularity, Seismic performance, Stiffness, Strength

I. INTRODUCTION

Plan irregularity in the context of building structures refers to deviations or variations from regular and symmetrical floor plans. These irregularities can occur in different forms, such as changes in shape, setbacks, protrusions, or asymmetry within the building layout. Plan irregularities are of particular concern because they can amplify the effects of seismic forces and compromise the overall structural integrity of a building. Analyzing and understanding the behavior of buildings with plan irregularities is crucial for designing safe and resilient structures that can withstand seismic events

II. SIGNIFICANCE OF STUDY

The study of plan irregularities in building structures holds immense importance for several reasons. Plan irregularities can have a substantial influence on the structural behavior and performance of buildings during seismic events. By thoroughly examining and understanding these irregularities, engineers and architects can identify potential weaknesses or areas of concern. This knowledge allows them to implement appropriate design strategies and structural measures to enhance the building's ability to withstand seismic forces and ensure the safety of its occupants.

Plan irregularities can impact the overall functionality and efficiency of a building. They can affect the distribution of loads, the behavior of structural elements, and the overall stability of the structure. By studying plan irregularities, architects and engineers can gain insights into how these irregularities influence factors such as stiffness, strength, and mass. This knowledge can inform design decisions, allowing for the optimization of the building's performance and functionality.

Torsion irregularity
Re-entrant corners
Diaphragm discontinuity
Out-of-plane offsets
Non-parallel systems

Figure-1. Different Plan Irregularities

The figure.1 describes different plan irregularities we may come across during configuration of any structure.

Figure-2 Plan Irregular Building (Kokaeli, Turkey, 1999)

Studying plan irregularities can lead to the development of improved design guidelines and practices. The findings and insights gained from such studies can contribute to the advancement of structural engineering knowledge and inform the development of design codes and standards. This, in turn, can lead to the creation of safer, more resilient, and structurally efficient buildings.

III. LITERATURE REVIEW

M. T. Raagavi et al. [1] has explored that the construction scenario where buildings often feature irregular geometries and elevations for aesthetic appeal, economic feasibility, or land availability reasons. However, studies indicated that regularly configured structures are generally more resistant to earthquakes than irregular ones. During seismic events, structures experience lateral deflections due to earthquake loads. The objective of this study was to investigate different types of building irregularities and their behavior when subjected to seismic forces. The researchers aimed to identify key parameters that was analyzed when assessing a structure's response to seismic forces. These parameters include displacement, base shear, storey drift, stiffness, strength, and

Research Article

Seismic Response of High Rise Structure With Vertical Irregularity

Shivanand C.G¹, Dhanyashree G Bhandarkar², Charan M Kudtarkar³

Assistant Professor, Department of Civil Engineering, The Oxford College of Engineering, Bangalore, Karnataka, India ¹ PG student, Department of Civil Engineering, The Oxford College of Engineering, Bangalore, Karnataka, India ^{2, 3}

Abstract:

Multi-story structures developed these days have an open first story as an unavoidable component. It has been nearly common in growing countries like India where extra space specifically for parking is difficult. The strength or stability of the structure when comes to open storey is always a concern to all civil engineers under seismic forces. The objective of the present work is to gain insight into the behaviour of structure by varying soft storey level in high rise building. Soft storey in the building is introduced by floor height increase of a particular floor. Dynamic analysis is carried out using FEM software. The various parameters studied are displacement, inter story drift and storey stiffness to analyse the effect of irregularity.

Keywords: Soft storey, Seismic forces, Dynamic analysis, Irregularity

I. INTRODUCTION

In most of the developing countries thought the globe, towns and cities are developing at a rapid rate. The faster rate of growth results in more vertical development, as almost all of the horizontal expansion has come to end. In high-rise building, the lateral loads on the building have greater risk. The lateral loads are both earthquake load and wind load. The direction of the lateral loads results into higher secondary moments and additional forces in the building.

II. IMPORTANCE OF STUDY

An earthquake or ground motion generates inertia forces in a building; the majority of the structure's mass is located at the floor level. Initially, inertia forces are dispersed downwards by slabs and beams to columns and walls and then to foundations. Therefore, columns and walls in the lower storey are designed to be stronger than those in the upper storey due to higher earthquake induced forces.

Figure-1. Failure of open first storey in Bhuj Earthquake

Figure-2. Different vertical Irregularities

The figure.2 describes different vertical irregularities we may come across during configuration of any structure.

Earthquakes are caused by differential movement in the earth's crust which results in the rapid release of stored strain energy that generates seismic waves causing ground shaking. This ground motion causes severe damage to the structure which is vulnerable to seismic waves. The way of behaving of a structure because of earthquake force relies upon its general shape, size, and math and furthermore the way that the seismic tremor force is done to the ground with next to no irregularity in the heap move. The seismic tremor powers created on various floors should be moved down along the level of the structure to the ground in the briefest way.

III. LITERATURE REVIEW

Hardik Bhensdadia et.al [1] studied G+4, G+9, and G+15 stories in different earthquake Zones & soft stories using the SAP 2000 y14 analysis package. The study is carried out using pushover analysis. Existing buildings situated in Rajkot are Considered for each case and are designed as per IS1893:2002, Earthquake Codal provision. Various building models were developed and pushover analysis was performed, pushover curve, and performed point, are Studied after the analysis. The displacement & Base shear of the building increases from the lower zone to the higher zone, because the magnitude of Intensity will be more for higher zones. Results of the study suggested that Beams & columns in a range of Life of Safety are required Beam jacketing & Column jacketing for increasing the stiffness of members in the exist buildings.

Sahara C Rathnasiri et.al [2] has done research on the development of an irregularity index based on dynamic characteristics to quantify the vertical geometric irregularities. The study compares the performance of the existing method in quantifying the degree of irregularity for the selected irregular building. These are analyzed using SAP 2000 software. Proposed irregularity index (Ψ) = Vf, regular / Vf, irregular where V is the fundamental mode base shear of the irregular frame. G+7 storey having 4bays with a uniform bay width of 5m and uniform storey height of 3.2m is adopted in this study by modeling 4 models having a floating column, stepped frame, setback frames, and normal building. Base shear and

INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT)

_	8.4	-	IL I	1.1
_	IVI		IN	U

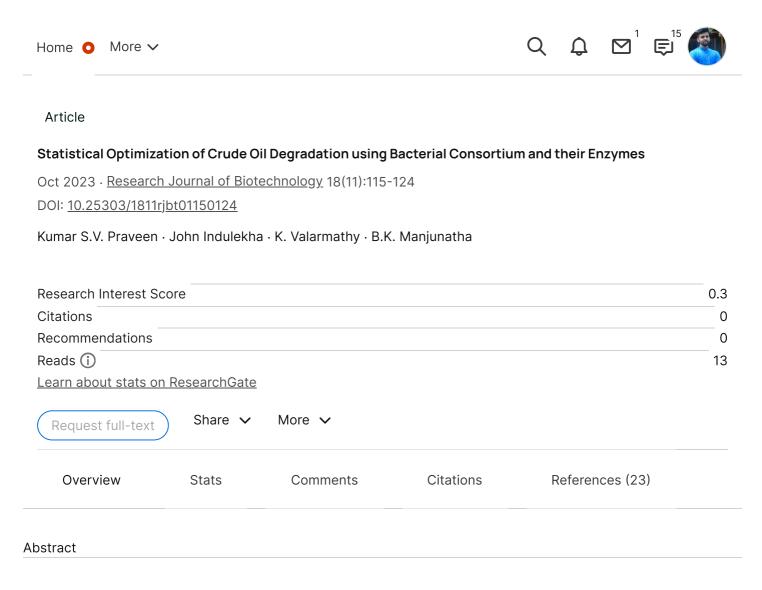
Search & Download more than 27000 research papers

VOLUME 12, ISSUE 03 (MARCH 2023)

Construction Sequence Analysis of G+30 RCC, Steel Residential Building with Floating Column

doi : 10.17577/IJERTV12IS030102

DOWNLOAD FULL-TEXT PDF


CITE THIS PUBLICATION

- Open Access
- Article Download / Views: 317
- Authors : T. S. Prashanth Hathwar , Rizwanuddin
- Paper ID : IJERTV12IS030102
- Volume & Issue : Volume 12, Issue 03 (March 2023)
- Published (First Online): 25-03-2023
- ISSN (Online) : 2278-0181
- Publisher Name : IJERT
- License: Commons Attribution 4.0
 International License

✓ PDF Version

∧ <u>Text Only Version</u>

The present study investigated the application of central composite design in enhanced crude oil remediation using bacterial consortium. The bacterial strains viz. KG-2, SMG-8, NR-3 and OK-6(2) isolated from soil were selected for the crude oil utilization studies. The strains were identified as Pseudomonas stutzeri-KX344913, P. stutzeri-KX289657, Providencia rettgeri-KX289656 and P. rettgeri-KX344914 respectively using 16s rDNA sequence. The preliminary degradation was done using the DCPIP redox-indicator and further degradation was conducted by using Response Surface Methodology (RSM) and the analysis of variance and regression model. CCD model was developed and batch experiments were performed to understand the significance of the four variables (pH, temperature, salinity and inoculum concentration) on the TPH degradation process by applying CCD based RSM.

Public Full-texts

An official website of the United States government Here's how you know

FULL TEXT LINKS

Difference SpringerLink

Appl Biochem Biotechnol. 2024 Mar;196(3):1350-1364. doi: 10.1007/s12010-023-04598-4. Epub 2023 Jul 3.

Antineoplastic Effects of Mucuna pruriens Against Human Colorectal Adenocarcinoma

Sagar Seetharamaiah 1 , Vidya Shimoga Muddappa 2 , Manjunatha Bukkambudhi Krishnaswamy 3 , Rashmi Kanugodu Vasappa 4

Affiliations PMID: 37395947 DOI: 10.1007/s12010-023-04598-4

Abstract

Mucuna pruriens (MP) which is commonly known as "Velvet Bean" is an underutilized legume traditionally used to treat Parkinson's disease and male fertility issues. Extracts of MP have also been identified for their antidiabetic, antioxidant, and antineoplastic effects. Commonly, the antioxidant and anticancer properties of a drug are linked together as antioxidants scavenge free radicals and prevent the cellular DNA damage which could result in cancer development. In this investigation, comparative assessment of the anticancer and antioxidant potentials of methanolic seed extracts from two common varieties of MP, Mucuna pruriens var. pruriens (MPP) and Mucuna pruriens var. utilis (MPU) against human colorectal cancer adenocarcinoma cells COLO-205, was carried out. The highest antioxidant potential was recorded with MPP with an IC₅₀ of 45.71 μ g/ml. The in vitro antiproliferative effects of MPP and MPU on COLO-205 showed an IC₅₀ of 131.1 µg/ml and 246.9 µg/ml respectively. Our results revealed intervention of the MPP and MPU extracts in growth kinetics of the COLO-205 cells in concomitance with apoptosis induction up to 8.73- and 5.58-folds respectively. The AO/EtBr dual staining and the flow cytometry results also confirmed the better apoptotic efficacy of MPP over MPU. MPP at a concentration of 160 µg/ml exhibited highest apoptosis and cell cycle arrest. Furthermore, effect of the seed extracts on p53 expression was investigated by quantitative RT-PCR and a maximum upregulation of 1.12-fold was recorded with MPP.

Keywords: Anticancer; Antioxidant; Apoptosis; Human colorectal carcinoma; Mucuna pruriens; p53 gene.

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

PubMed Disclaimer

Related information

MedGen

LinkOut - more resources

Full Text Sources
Springer
Medical
MedlinePlus Health Information

Research Materials NCI CPTC Antibody Characterization Program

Miscellaneous NCI CPTAC Assay Portal ▲Journal Home (Https://Www.ljpsonline.Com/)

Advertising (Https://Www.ljpsonline.Com/Advertise.Html)

Subscriptions (Https://Www.ljpsonline.Com/Subscriptions.Html)

Contact Us (Https://Www.ljpsonline.Com/Addresses.Html)

Scientific Publication Of The Indian Pharmaceutical Association (Http://Www.lpapharma.Org/)

Select Language 🔹 🗸

Powered by Google Translate (https://translate.google.com)

The Journal (Https://Www.Ijpsonline.Com/Aboutus.Html)

f (https://www.facebook.com/ijpsonlinejournal/)

Editors (Https://Www.Ijpsonline.Com/Editors.Html) (https://twitter.com/IndianJPharmSci)

Current Issue (Https://Www.Ijpsonline.Com/Current-Issue.Html)

Archives (Https://Www.Ijpsonline.Com/Archive.Html)

In Press (Https://Www.Ijpsonline.Com/Inpress.Html)

Instructions (Https://Www.Ijpsonline.Com/Instructions.Html)

Log in

∑ Menu

Q Search

🔁 Cart

Home Applied Biochemistry and Biotechnology Article

Antineoplastic Effects of *Mucuna pruriens* Against Human Colorectal Adenocarcinoma

Original Article Published: 03 July 2023 Volume 196, pages 1350–1364, (2024) Cite this article

Applied Biochemistry and Biotechnology

Aims and scope

Submit manuscript

Sagar Seetharamaiah, Vidya Shimoga Muddappa, Manjunatha Bukkambudhi Krishnaswamy & Rashmi Kanugodu Vasappa 🖂

319 Accesses 1 Citation 2 1 Altmetric Explore all metrics \rightarrow

Abstract

Mucuna pruriens (MP) which is commonly known as "Velvet Bean" is an underutilized legume traditionally used to treat Parkinson's disease and male fertility issues. Extracts of MP have also been identified for their antidiabetic, antioxidant, and antineoplastic effects. Commonly, the antioxidant and anticancer properties of a drug are linked together as antioxidants scavenge free radicals and prevent the cellular DNA damage which could result in cancer development. In this investigation, comparative assessment of the anticancer and

Solution We found a match

Your institution may have access to this item. Find your institution then sign in to continue.

Title

A Comparative Study on Resource Aware Allocation and Load balancing Techniques for Cloud Computing.

Authors

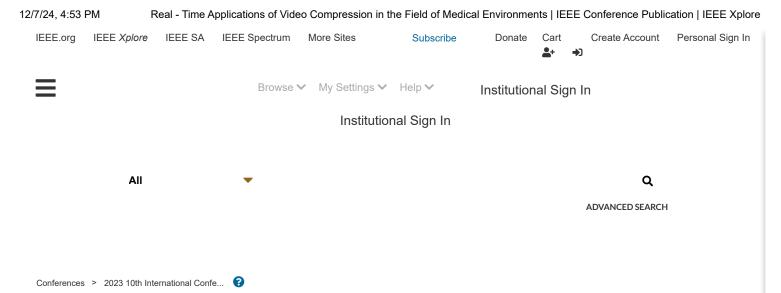
Kamatar, Malatesh; Madhavi, P. Bindhu

Abstract

Advances in cloud networking, cloud infrastructure, and data processing necessitate resource management flexibility. Fault tolerance systems, which include effective load balancing and migration of applications without disturbing any other services operating, should be the key criteria for ensuring the high availability of cloud data centres. Providers of Cloud service should intelligently supply resources to every customers to achieve the optimum resource assignment in changing hosting frameworks. Moreover, many problems in load balancing approaches such as security, fault tolerance, etc exist in today's cloud computing environments. Realizing its relevance and importance, issue of resource aware load balancing in the cloud has received a lot of attention, and numerous load balancing methods is introduced in the literature. Study intends to focus on the survey of many resource aware allocation and load balancing approaches with their advantages and disadvantages. Finally, conclusion with future work is derived a novel technique based on optimization strategy that should guaranteed a drastic improvement in resource utilization on Cloud than existing approaches.

Subjects

RESOURCE allocation; CLOUD computing; SERVER farms (Computer network management); FAULT tolerance (Engineering); ANT algorithms; COMMUNICATION infrastructure


Publication

Grenze International Journal of Engineering & Technology (GIJET), 2023, Vol 9, Issue 1, p684

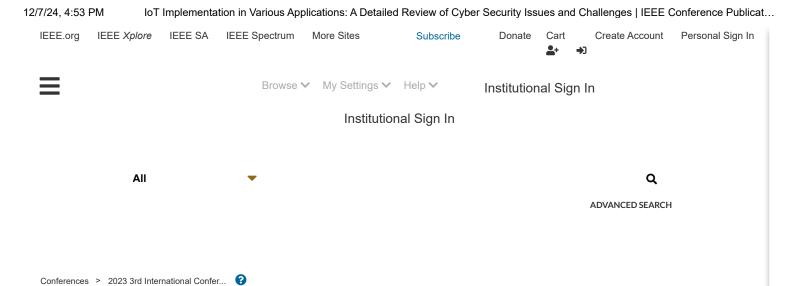
ISSN

2395-5287

Publication type

Real - Time Applications of Video Compression in the Field of Medical Environments

Publisher: IEEE Cite This


Siva Kumar Kommerla ; Bindhu Madhavi Prathipati ; K. Janaki ; R. CH. A. Naidu All Authors •••

📌 PDF

Add to Citation Alerts

Abstract	⊳	
Document Sections	Downl PDF	
Introduction	Abstract:	
Related Work		ompression of medical videos, to decrease file size and storage
. Proposed Methodology	requirements, there is an increasing need for med	ical video com View more
. Conclusion	✓ Metadata	
Future Scope and Limitations	requirements, there is an increasing need for med	ompression of medical videos, to decrease file size and storage ical video compression nowadays. Using a lossy compression ined, but information will be lost, and possible diagnostic mistakes
Authors	may follow. The requirement to store medical vide	o in lossless format results from this. The aim of utilizing a lossless ause the traditional lossless compression technique yields a poor
References	compression ratio. The temporal and spatial redur	adact the traditional resolution compression technique yields a peop adancy seen in video sequences can be successfully utilized by th describes the lossless encoding mode and shows how a better
Keywords	compression ratio can be achieved.	
Metrics	Published in: 2023 10th International Conference	on Computing for Sustainable Global Development (INDIACom)
More Like This	Date of Conference: 15-17 March 2023	Publisher: IEEE
	Date Added to IEEE Xplore: 04 May 2023	Conference Location: New Delhi, India
5		

IoT Implementation in Various Applications: A Detailed Review of Cyber Security Issues and Challenges

Publisher: IEEE Cite This

🔓 PDF

لمر Down

Abstract:

Metadata

Abstract:

Melanie Lourens; Durgaprasad Gangodkar; Mohit Tiwari; Dharam Buddhi; Dharamvir Dharamvir; Shikha Kuchhal All Authors •••

Data must be protected against cybercrime as the network revolution grows and becomes more complicated. With the

Data must be protected against cybercrime as the network revolution grows and becomes more complicated. With the

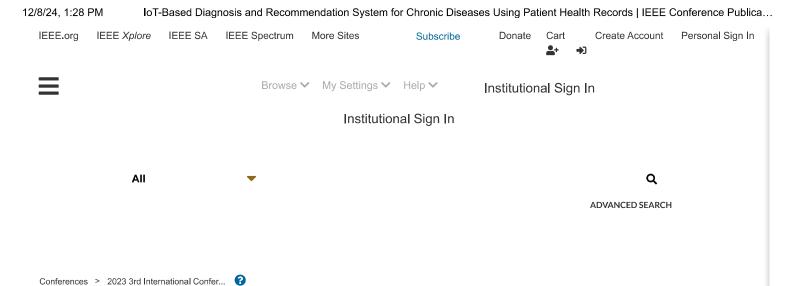
dollars. Because these crimes are perpetrated often, it is vital to increase cyberspace security to lessen and perhaps

even prevent the effects of cybercrime. The internet of things (IoT) phenomena is now the subject of study, as privacy

and safety are acknowledged as the primary concerns for lot., particularly in light of the fact that they are being used in

purpose to intentionally damage sensitive and secret information, cybercrimes cost the world economy billions of

Abstract


Document Sections

I. Introduction

- II. Related Discussion
- III. Some Security Challenges In Network Layer
- IV. Layerwise Security Techniques
- V. Suggested Solution for lot Protection

Show Full Outline -	crucial contexts like healthcare systems. The current state of safety in the IoT sector is examined in this paper, along with security-related problems. We look at particular security needs and methods for resolving these problems. IoT safety is being recognised as a problem that blockchains may help with.		
Authors			
Figures	Published in: 2023 3rd International Conference on Ad	vance Computing and Innovative Technologies in Engineering	
References	(ICACITE)		
Keywords	Date of Conference: 12-13 May 2023	DOI: 10.1109/ICACITE57410.2023.10183094	
Metrics	Date Added to IEEE Xplore: 24 July 2023	Publisher: IEEE	

purpose to intentionally damage sensitive and secret info... View more

IoT-Based Diagnosis and Recommendation System for Chronic Diseases Using Patient Health Records

Publisher: IEEE Cite This

🏓 PDF

S. K. UmaMaheswaran ; Durgaprasad Gangodkar ; V. Samatha ; I. S. Chakrapani ; Dharamvir ; Dharam Buddhi All Authors 🚥

 1
 63

 Cites in Paper
 Full

 Text Views
 Alerts

Abstract

Document Sections

I. Introduction

- II. Methodology
- III. Conclusion

Authors Figures

References

Citations

Keywords

Metrics

More Like This

PDF

ړ

Abstract:

The proliferation of IoT applications, notably in the sphere of health care, has led to discussion of patient health records utilising data gathered from IoT-connected de... **View more**

Metadata

Abstract:

The proliferation of IoT applications, notably in the sphere of health care, has led to discussion of patient health records utilising data gathered from IoT-connected devices. Biological data from patients' medical records is mined for health analysis and diagnosis. Certain types of illness, known as chronic illnesses, are completely quiet yet devastating if left untreated. Recent years have seen an uptick in interest from academics in the utilization of patient health information data for the pre-emptive identification of chronic diseases. On the other side, healthcare and medical assistance have benefited enormously from the implementation of recommender systems that use machine learning techniques. Using an Internet of Things device, this research implemented a medical recommendation system to aid in the early diagnosis and management of chronic conditions. The current technique made use of the dataset of digitised patient health records that is housed in the Physio Net data repository. The current dataset contains patient health records that have been documented in accordance with the diseases that have been identified and the doctor's diagnosis. The recommended technique uses K-nearest neighbour classification to identify the kind of ailment before using collaborative filtering to select the optimal course of treatment for patients. The outcomes of using the suggested methodology show that this technique, which is based on using patient symptom similarity, produces better results than previous methods and has a high precision in diagnosing and forecasting chronic illnesses. After determining the kind of disease using the closest neighbour classification method, the collaborative filtering strategy is utilised to select the optimal course of therapy for patients. The outcomes of using the suggested methodology show that this technique,

Add to Citation Alerts

Log in

 \equiv Menu

Q Search

戸 Cart

Home Journal of Electronic Materials Article

Anticorrosive Polypyrrole/Barium Ferrite (PPy/BaFe₁₂O₁₉) Composites with Tunable Electrical Response for Electromagnetic Wave Absorption and Shielding Performance

Original Research Article Published: 06 January 2023 Volume 52, pages 2080–2093, (2023) Cite this article

Journal of Electronic Materials

Aims and scope

Submit manuscript

<u>C. H. Abdul Kadar, Muhammad Faisal</u> ∑, <u>N. Maruthi</u> ∑, <u>Narasimha Raghavendra</u> ∑, <u>B. P.</u> <u>Prasanna, K. R. Nandan, S. R. Manohara, M. Revanasiddappa & C. K. Madhusudhan</u>

440 Accesses 12 8 Citations Explore all metrics \rightarrow

Abstract

This paper highlights the suitability of PPy/BaFe₁₂O₁₉ composites with tunable electrical properties as well as anticorrosive properties for broadband electromagnetic interference (EMI) shielding applications. A PPy/BaFe₁₂O₁₉ composite was structurally and morphologically investigated using x-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy (SEM) techniques.

Indian Journal of Engineering & Materials Sciences Vol. 30, August 2023, pp. 614-621 DOI: 10.56042/ijems.v30i4.2520

Design and Analysis of 2D Photonic Biosensor with ML for Respiratory Virus Detection

Vishalatchi S^a, Kalpana Murugan^{a*}, Nagaraj R^b & Gayathri H N^c

^aDepartment of Electronics and Communication Engineering, Kalasalingam Academy of Research and Education,

Srivilliputhur 626 126, India

^bMohan Babu University, Tirupati 517 102, India

^cDepartment of Chemistry, The Oxford College of Engineering, Bengaluru 560 068, India

Received: 09 June 2023; Accepted: 05 August 2023

In this study, we have designed and integrated a novel photonic biosensor with a Machine Learning approach for the detection of five common respiratory viruses. The biosensor has been developed using a two-dimensional hexagonal photonic crystal defect structure, which has been designed through the use of Finite Difference Time Domain (FDTD) and Plane Wave Expansion (PWE) techniques to monitor wavelength shifts during virus detection. The analytes have been efficiently captured within the sensor's pores to optimize performance. The uniqueness of our sensor has been demonstrated through enhanced sensitivity (584nm/RIU) and a remarkable quality factor (9734). We have employed the naïve Bayes classifier Machine Learning algorithm to achieve accurate virus detection, leveraging parameters that have been extracted from the sensor design. Our integrated sensor and classifier have provided robust classification of virus types, outperforming existing methods, and yielding highly accurate results. Furthermore, to enhance user accessibility, we have developed a graphical user interface for intuitive result interpretation.

Keywords: Naïve Bayes, Sensor, Virus, 2D PhC, Hexagonal ring resonator, Sensitivity, Quality factor, Respiratory virus

1 Introduction

Viruses have long been acknowledged as perilous parasitic entities with the capacity to infect living organisms, giving rise to a broad spectrum of diseases. These infectious agents, characterized by their minuscule size and uncomplicated composition, have exclusively targeted living cells¹. Within the host organism, viruses have thrived, replicated, and at times, rendered traditional antibiotic treatments ineffective. The primary objective of this study has been to introduce a highly sensitive sensor device capable of exceptionally accurate detection of the presence of viruses in blood samples². Specifically, our focus has encompassed five viruses that frequently afflict the respiratory system: Influenza³, Corona⁴, Adeno⁵, HBoV (Human Boca virus)⁶, Tuberculosis⁷. and The consequences of respiratory infections⁸ have been severe, potentially leading to fatal outcomes if not promptly detected and treated.

In recent years, the world has borne witness to the emergence of new and more menacing viruses, resulting in global pandemics. As Selma Souf has noted, viruses pose the most dangerous threats to human life⁹, leading to grave health concerns. Innovative technologies, such as the Europium Nanoparticle-based Immune Assay (ENIA), have been developed for detecting Influenza A and B viruses in blood samples. Similar approaches have been employed to identify respiratory viruses, including swine-origin influenza A/H1N1 and SARS coronavirus. These endeavors underscore the paramount importance of early virus detection, which has been achieved through the utilization of a Photonic crystal environment.

A Photonic Biosensor is an established analytical device designed to detect analytes by amalgamating a reactive element with a physical and chemical indicator. The term "biosensors" was first introduced by Clark and Lyons in the 1960s. These sensors can be categorized as tissue-based, enzyme-based, or magneto/piezo-electric based sensors. Within these sensors, biological analytes have been recognized for their ability to modify the properties of light particles, encompassing the light source, waveguide medium, and photodetector¹⁰. Recently, ring resonators have gained prominence due to their diminutive size and prompt responsiveness. Two-dimensional photonic

^{*}Corresponding author (E-mail:drmkalpanaece@gmail.com)

ScienceDirect

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy

Volume 299, 15 October 2023, 122879

Encapsulated Co-ZnO nanospheres as degradation tool for organic pollutants: Synthesis, morphology, adsorption and photo luminescent investigations

<u>Usha Jinendra a</u>, <u>B.M. Nagabhushana b</u>, <u>Dinesh Bilehal a A ⊠</u>, <u>Muzaffar Iqbal c</u>, Raghavendra G. Amachawadi ^d, Chandan Shivamallu ^e, Shiva Prasad Kollur ^f A ⊠

Show more 🗸

https://doi.org/10.1016/j.saa.2023.122879 ス Get rights and content ス

Highlights

- Doped ZnO-Co <u>nanostructures</u> were synthesized through the solution <u>combustion process</u>.
- PXRD, SEM, FTIR, Photoluminescence studies are used in this study.
- Isotherm and kinetics are investigated by analysing the degradation of Malachite Green dye.

Abstract

2/7/24, 4:56 PM	FEM Analysis of Railway Brake Dise	c for Safety of Train IEE	E Conference Publication I	EEE Xplore
IEEE.org IEEE Xplore I	EEE SA IEEE Spectrum More Sites	Subscribe Do	nate Cart Create Acc ▲+ →	ount Personal Sign In
≡	Browse 🗸 My Settings 🗸	Help 🗸 Instit	utional Sign In	
	Institutio	nal Sign In		
All	•			Q
			ADVANCED S	EARCH
Conferences > 2023 10th Interna	tional Confe 😯			
FEM Analysis o	f Railway Brake Disc for S	Safety of Train	I	
Publisher: IEEE Cite T		2		
Deepa. N. ; Sneha Sharma ;	H N Gayathri; Preeta Sharan; Rakesh BR; Ab	nishek Gopalakrishna Bhat	All Authors •••	
3 79			0 🦿 C	⊨ ♠
Cites in Full Papers Text Views				Alerts
				Manage Content Alerts
				Add to Citation Alerts
Abstract				
Document Sections	Downl PDF			
I. Introuduction	Abstract:			
II. Literature Review	Monitoring the temperature of disc brakes address this issue, a finite element analys	-	eir optimal performance in ra	ilway applications. To
III. Methodology	 Metadata 			
IV. Conclusion	Abstract:			
V. Limitations	Monitoring the temperature of disc brakes address this issue, a finite element analys			
Authors	various parts of the brake under different of affect the braking mechanism and lead to			
Figures	between the brake and the axle, it is poss	ble to detect temperature	changes as heat flows from	the brake's outer
References	frictional surface towards the axle. This is same impact as a large temperature varia	-		ar the axle can have the
Citations	Published in: 2023 10th International Co	nference on Computing fo	or Sustainable Global Develo	opment (INDIACom)
Keywords				
-	Date of Conference: 15-17 March 2023		ner: IEEE	
Metrics	Date Added to IEEE Xplore: 04 May 202	3 Confer	ence Location: New Delhi,	India
More Like This	ISBN Information:			
0				

Results in Optics Volume 11, May 2023, 100376

Design and simulation of a highly sensitive one-dimensional photonic crystal for different chemical sensing applications

P.R. Yashaswini $^{\rm a}$ $\stackrel{\rm o}{\sim}$ $\stackrel{\rm id}{\approx}$, H.N. Gayathri $^{\rm b}$, Indira Bahaddur $^{\rm a}$, PC Srikanth $^{\rm b}$

Show more 🗸	
i≡ Outline 🗳 Share 🍠 Cite	
- https://doi.org/10.1016/j.rio.2023.100376 ↗ Get rights and content ↗	
Under a Creative Commons license 🤊	open access

Abstract

The main goal of this study is to construct a highly sensitive one-dimensional (1D) <u>photonic crystal</u> sensing system for chemical detection. Magnesium fluoride and cadmium fluoride, <u>tantalum</u> pentoxide and <u>silicon dioxide</u>, titanium dioxide and silicon dioxide, and <u>zinc sulphide</u> and silicon dioxide are the four different layer materials that have been taken into consideration. Defect layer width ranges from 3500nm to 5000nm. Every combination of layers that was taken into consideration exhibited sensitivity that was greater than 500nm/RIU, according to the simulation results. In that combination of layers, silicon dioxide and titanium dioxide have shown the highest sensitivity of 675 nm/RIU. Defects wider than 4000nm can achieve 98% transmission efficiency. The sensor displayed a Figure of Merit (FoM) of 8437, a limit of detection (LOD) of 7.30 ×10⁻⁶ RIU, and a maximum quality factor of 13,687.

Keywords

Photonic Crystal; Defects; Chemical Sensor; Sensitivity; Transmission efficiency; one-dimensional (1D) material; Figure of Merit (FoM); Limit of Detection (LoD)

1. Introduction

For the detection of blood plasma and malignant cells, a one-dimensional (1D) photonic crystal (PhC) based sensor has previously been developed (Ankita et al., 2021). The sensor was created by sandwiching layers of two different types of minerals, such as SiO2 and TiO2 (Haron et al., 2017). The effectiveness of the sensor system is assessed using several mathematical techniques. For a sample layer thickness increase from 100nm to 300nm, the sensing layer's sensitivity is raised to 71.25nm/RIU. For haemoglobin, the sensing layer's sensitivity was 73nm, while for blood plasma, it was 72nm. In this research, a 1D photonic crystal-based <u>biosensor</u> for the diagnosis of malaria has been developed, and different blood sample concentrations have been used for sensing (Abd, 2023). Most of the photonic crystal sensor has been designed and analysed for biosensing application in detection of different bioanalytes and different micro pressure sensing application with photonic crystal strains sensor.

To diagnose malaria, a well-known transfer matrix approach has been used. The sensor's highest sensitivity has been measured at 495.63 nm/RIU.

Peak resonant shift has been observed for varying <u>refractive indices</u> of the sample layer (Goyal, 2020). A high-sensitivity photonic crystal biosensor has been designed and analyzed for bio-sensing application. In this paper, the area between the target analyte and the sensing layer has been increased to optimize the sensitivity of the sensing structure (Aly et al., 2021). A three-dimensional finite-difference time-domain (FDTD) simulation is considered during the analysis and the sensitivity of sensing structure was increased up to 500%. Then the mode profile

🚧 Communications in Mathematics and Applications

HOME / ARCHIVES / VOL. 14 NO. 4 (2023) / Research Article

Restrained and Total Restrained Domination of Ladder Graphs

N. C. Hemalatha

Department of Mathematics, Oxford College of Engineering, Bengaluru, Karnataka, India https://orcid.org/0000-0002-3121-623X

S. B. Chandrakala

Department of Mathematics, Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India https://orcid.org/0000-0002-4868-4187

B. Sooryanarayana

Department of Mathematics, Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka, India https://orcid.org/0000-0002-2835-2855

M. Vishu Kumar

Department of Mathematics, REVA University, Bengaluru, Karnataka, India https://orcid.org/0000-0003-0719-3637

DOI: https://doi.org/10.26713/cma.v14i4.2569

Keywords: Domination, Total domination, Restrained domination

ABSTRACT

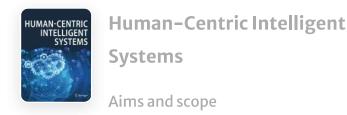
Telle and Proskurowksi introduced restrained domination as a vertex partition problem in partial ktress (Algorithms for vertex partitioning problems on partial k-trees, *SIAM Journal on Discrete Mathematics* **10**(4) (1997), 529 - 550). For a graph G(V, E), a restrained domination number is the minimum cardinality of a subset \mathfrak{D} of V such that for every vertex $v \in \overline{\mathfrak{D}}$ there is a vertex in \mathfrak{D} as well as in $\overline{\mathfrak{D}}$ adjacent to v. If \mathfrak{D} satisfies an additional condition that every vertex of V has a neighbor in \mathfrak{D} , then \mathfrak{D} is said to be a total restrained dominating set. Minimum cardinality of \mathfrak{D} is said to be

Log in

∑ Menu

Q Search

戸 Cart

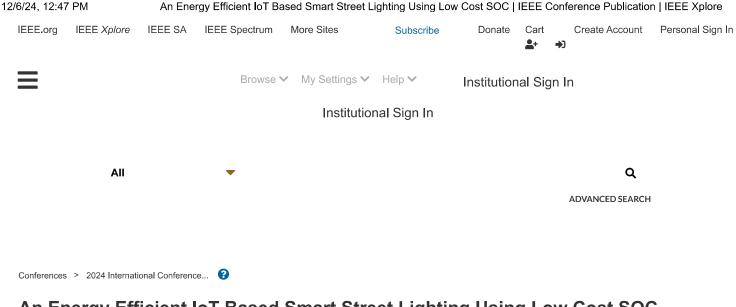

Home Human-Centric Intelligent Systems Article

An Enhanced Location-Aided Ant Colony Routing for Secure Communication in Vehicular Ad Hoc Networks

Research Article Open access Published: 10 January 2024 Volume 4, pages 25–52, (2024) Cite this article

Download PDF 坐

You have full access to this open access article


Submit manuscript

Raghu Ramamoorthy 🖂

955 Accesses \bigcirc 1 Altmetric Explore all metrics \rightarrow

Abstract

The dynamic characteristics of vehicular ad hoc networks (VANETs) demand reliable and secure communication over wireless media. However, there are significant contradictions in autonomous vehicular systems related to security and privacy. Furthermore, VANETs require

An Energy Efficient IoT Based Smart Street Lighting Using Low Cost SOC

Publisher: IEEE

🏓 PDF

Cite This

Anitha Velu ; Raghu Ramamoorthy ; Manasa S M ; Devakirubai Navulkumar All Authors •••

37 Full Text Views

Abstract

Document Sections

I. Introduction

II. Motivation and Background

III. Proposed IoT Based Smart Street Lighting

IV. Results and Discussion

 V. Conclusion and Future Work

Authors

Figures

References

Keywords

Metrics

More Like This

Dow

PDF

Abstract:

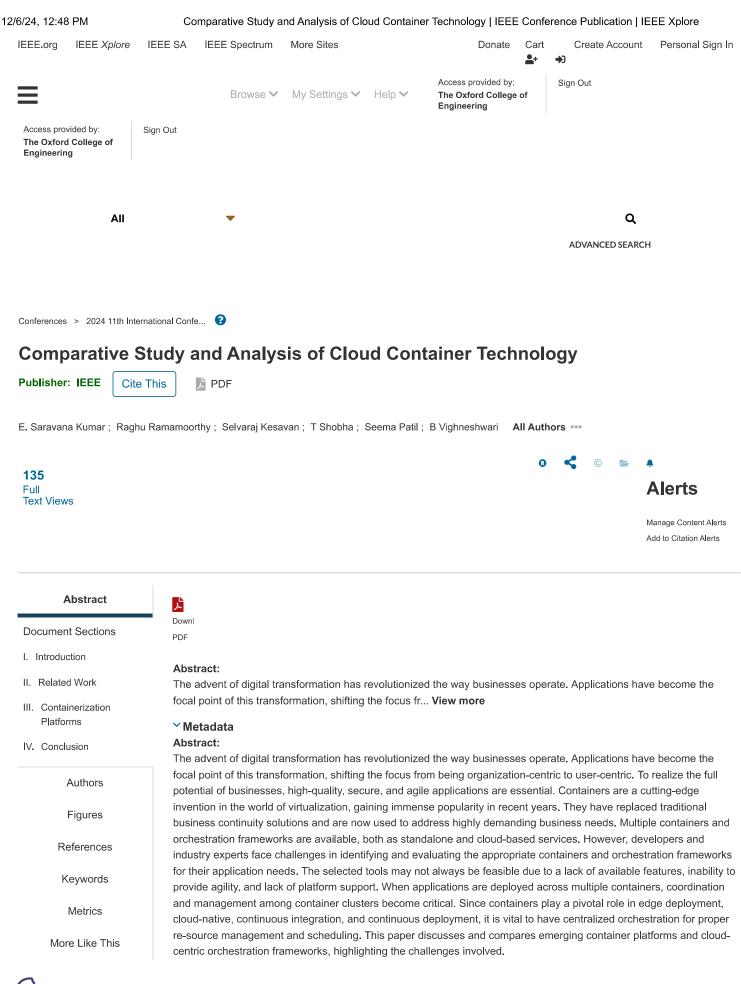
Internet of Things (IoT) has radically improved and modernized in every aspect of human existence. The term IoT is a recent trend that states the development a self-confi... **View more**

✓ Metadata

Abstract:

Internet of Things (IoT) has radically improved and modernized in every aspect of human existence. The term IoT is a recent trend that states the development a self-configurable network by connecting a variety of hardware objects, to internet without requiring human input to improve service delivery and automate processes by means of data transmission to the cloud. Streetlights are an essential component of any city, although they provide safer roadways, improved night vision, and increased visibility of public spaces it uses a significant amount of electricity and operates at

maximum intensity from dusk till day own if it is not in use. This work pres On Chip (SOC) circuit. This work de ON or OFF the street light based or activated by either light or dark. This which the LDR sensed value is give anywhere using internet in real time proposed work is implemented usin different times.


Access to this document requires a subscription.

IEEE offers both personal and institutional subscriptions. Whether you are an academic, a practitioner, or a student, IEEE offers a range of individual and institutional subscription options that can meet your needs.

Published in: 2024 International Co (ICECCC) Alerts

Manage Content Alerts Add to Citation Alerts

<u>Close</u>

Published in: 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom)

Log in

∑ Menu

Q Search

ঢ় Cart

Home Remote Sensing in Earth Systems Sciences Article

Analysis of Changes and Influences Using Remote Sensing and Geodetectors on How Human Activity Affects Ulansuhai Lake Basin Ecology

RESEARCH Published: 01 July 2024

Volume 7, pages 55–65, (2024) Cite this article

Remote Sensing in Earth Systems

Sciences

Aims and scope

Submit manuscript

Krishnasamy Vengatesan 🖂, Manoharan Rajesh & Eswaran Saravana Kumar

5 75 Accesses Explore all metrics \rightarrow

Abstract

Investigating the Ulansuhai Lake in southwest Inner Mongolia, China, this study uses a holistic approach that incorporates many datasets and approaches to evaluate the ecological environmental quality of the area. The specific geographical features and climate of the research region allow for a thorough examination of ecological changes through time. The research finds significant regional and temporal changes in ecological quality, with 12/6/24, 12:51 PM

HOME / ARCHIVES / VOL 5 NO 2 (2024): APRIL / Articles

Priority Based Lightweight Cluster Routing for Efficient Communication in Vehicular Ad Hoc Networks

Raghu Ramamoorthy

Department of Computer Science and Engineering, The Oxford College of Engineering, Bengaluru, Karnataka, India

Manasa S. M.

Department of Computer Science and Engineering, The Oxford College of Engineering, Bengaluru, Karnataka, India

Anitha Velu

Department of Electronics and Communication Engineering, Sri Sairam College of Engineering, Bengaluru, Karnataka, India

Keywords: VANETs, efficient routing, clustering, priority based routing

ABSTRACT

A vehicular ad hoc network (VANET) is a network that is dynamic and has no infrastructure. In VANET movable autonomous vehicles rely on wireless communication systems to form an autonomous, self-organized, and infrastructure-less network. VANETs are prone to frequent path failure due to their high mobility. High mobility causes the node state to change continuously, so routing and communication between vehicles are challenging tasks in VANET. At this point, to provide efficient routing, this work proposes a priority-based lightweight clustering model (P-LWCM) for cluster-based routing. In the proposed work, stable and efficient cluster heads and members are selected for routing in VANET. The proposed system uses various parameters including mobility, Packet Loss Ratio (PLR), Packet Misrouting Ratio (PMR), and Priority Ratio (PR) to select a vehicle as a cluster head or to include a

K Back

Journal of Biophotonics / Volume 17, Issue 7 / e202400070 RESEARCH ARTICLE

Design and analysis of a fiber Bragg grating-based foot pressure assessment system

Preeta Sharan, Ghada A. Khouqeer, Basma A. El-Badry, Anup M. Upadhyaya 🔀

First published: 25 April 2024 https://doi.org/10.1002/jbio.202400070

Abstract

This research presents a comprehensive study focused on the design, implementation, and analysis of an innovative fiber Bragg grating (FBG) based foot pressure assessment system. FBG sensors strategically placed on the great toe, metatarsal 1, metatarsal 2, and heel provided distinct peak resonant wavelengths, strains, and pressures during experimental cycles. Participant 1 exhibited peak resonant wavelength of 1537.745 nm for great toe, 1537.792 nm for metatarsal 1, 1537.812 nm for metatarsal 2, and 1537.824 nm for heel. Participant 2 showcased distinct graphical representations with peak resonant wavelengths ranging from 1537.903 to 1537.917 nm. In a fracture patient condition, the FBG-based system monitored weight-bearing capacity, integrated with real-time X-ray imaging for dynamic insights of rehabilitation as distinct approach. The strains and pressures at each position exhibited notable variations along with the sensitivity of 1.31με obtained across all positions, underscoring the FBG-based system's reliability in capturing subtle foot pressure.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

Journal of Biophotonics / Volume 17, Issue 7 / e202400083

RESEARCH ARTICLE

An FBG-based optical pressure sensor for the measurement of radial artery pulse pressure

Ranjith B. Gowda 🔀, Preeta Sharan, Saara K, Mona Braim, Abdullah N. Alodhayb

First published: 02 May 2024 https://doi.org/10.1002/jbio.202400083 Citations: 3

Abstract

One of the diagnostic tool for clinical evaluation and disease diagnosis is a pulse waveform analysis. High fidelity radial artery pulse waveforms have been investigated in clinical research to compute central aortic pressure, which has been demonstrated to be predictive of cardiovascular diseases. The radial artery must be inspected from several angles in order to obtain the best pulse waveform for estimate and diagnosis. In this study, we present the design and experimental testing of an optical sensor based on Fiber Bragg Gratings (FBG). A 3D printed device along with the FBG is used to measure the radial artery pulses. The proposed sensor is used for the purpose of quantifying the radial artery pulse waveform across major pulse position point. The suggested optical sensing system can measure the pulse signal with good accuracy. The main characteristic parameters of the pulse can then be retrieved from the processed signal for their use in clinical applications. By conducting experiments under the direction of medical experts, the pulse signals are measured. In order to experimentally validate the sensor, we used it to detect the pulse waveforms at Guan position of the wrist's radial artery in accordance with the diagnostic standards. The findings show that combining optical technologies for physiological monitoring and radial

SPRINGER NATURE Link

Q Search

Log in

∑ Menu

🔆 Cart

Home Journal of Optics Article

Design of optical sensor for cancer prognosis prediction using artificial intelligence

Research Article Published: 11 July 2023

Volume 53, pages 1009–1017, (2024) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Ranjeet Kumar Pathak, Sumita Mishra & Preeta Sharan 🖂

5 202 Accesses 3 Citations Explore all metrics \rightarrow

Abstract

A key role of the World Health Organisation is improving the proportion of patients with early cancer diagnosis. Due to the high rates of mortality and recurrence, the treatment process requires several months and is very expensive. Over the years, advancements in computer engineering and optical field communication have inspired numerous scholars to use a variety of computational algorithms to analyse and study the accuracy of the illness prognosis. This article discuss on the development of 2D-photonic crystal biosensor for detecting the variation in refractive index of healthy cell and different types of cancer cell. The variation in refractive index of cell is from 1.368 to 1.399. Work also shows how artificial intelligence algorithm can be used for detecting various types of cancer like blood cancer,

Q Search

Log in

∑ Menu

় Cart

Home Journal of Optics Article

Modeling and realization of photonic biosensor for hazardous virus detection using ML approach

Research Article Published: 07 February 2024

(2024) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

S. Vishalatchi, Kalpana Murugan 🖂, Nagaraj Ramrao & Preeta Sharan

97 Accesses 1 Citation Explore all metrics \rightarrow

Abstract

The broad range of sexually transmitted viruses are infections generally attained through uncertain sexual contact and can lead to serious health complications or may result in death if not diagnosed earlier. In this work, a Biosensor based on two-dimensional (2D) photonic crystal structures is proposed and integrated with Machine learning performance metrics. The 2D photonic crystal-based optical sensor platform produces a simulated signature outcome. The output spectral behavior varies according to the type of virus deducted. To calculate the accuracy, the signature data are trained and tested using the Machine Learning (ML) algorithm, k-Nearest Neighbors (kNN). The Modified Mach–Zehnder Interferometer (MMZI) structure shows the novelty of the work by attaining high sensitivity and quality

ScienceDirect[®]

Optik

Volume 321, February 2025, 172148

A two-stage detection methodology for thyroid cancer using photonic crystal: Logistic regression and artificial neural networks

Ranjeet Kumar Pathak ^a $\stackrel{ ext{theta}}{\longrightarrow}$, Sumita Mishra ^a $\stackrel{ ext{theta}}{\longrightarrow}$, Sandip Kumar Roy ^b $\stackrel{ ext{theta}}{\longrightarrow}$, Preeta Sharan ^c $\stackrel{ ext{theta}}{\longrightarrow}$

Show more \checkmark

😪 Share 🌗 Cite

https://doi.org/10.1016/j.ijleo.2024.172148 **A** Get rights and content **A**

Abstract

Cancer remains a significant health concern affecting many people globally. Recognizing the importance of early identification and treatment of thyroid cancer, we have developed a novel detection method utilizing supervised Machine Learning (ML) techniques, specifically Logistic Regression (LOR) and Artificial Neural Networks (ANN). Our approach leverages Photonic Crystal (PhC) sensors to detect thyroid cancer. Thyroid cancer affects the thyroid gland, which is responsible for regulating the body's growth and metabolism through hormone production. The incidence of thyroid cancer is increasing worldwide, making early and accurate diagnosis crucial for improving patient outcomes. Current detection methods like fine-needle aspiration biopsy and ultrasound have limitations in terms of accuracy, invasiveness, and cost. Thus, we propose the use of PhC sensors, which can detect changes in the Refractive Index (RI) of biological tissues caused by cancerous cells. In our two-stage detection methodology, the first phase uses LOR to classify specimens as benign or malignant based on data from PhC sensors. The second phase employs ANNs to further classify the malignant samples into papillary, follicular, medullary, or anaplastic thyroid

Log in

∑ Menu

Q Search

ঢ় Cart

Home International Journal of Information Technology Article

Computer-aided analysis of tapered roller bearings for rail transport system

Original Research Published: 28 December 2023 Volume 16, pages 831–839, (2024) Cite this article

International Journal of Information Technology

Aims and scope

Submit manuscript

N. Deepa, Preeta Sharan 🔽 & Sneha Sharma

5 126 Accesses (1) 5 Citations Explore all metrics \rightarrow

Abstract

The major objective of this research is to estimate the effects of temperature on tapered roller bearings through the investigation of strain and thermal behaviors. Autodesk Fusion 360 is chosen to design the geometry in the manner specified and employing ANSYS Workbench to perform Finite Element Analysis. The stresses between the roller, interior, and exterior rings can be evaluated by bearing studies. This study focuses on thermal and static analysis to determine the temperature at various bearing locations and to simulate the bearing's condition to anticipate its condition. From our computational analysis of coupled finite element analysis for range of temperatures between 150 and 190 °C we observe inner

Log in

💭 Cart

📃 Menu

Q Search

Home Optoelectronics Letters Article

Investigation on FBG based optical sensor for pressure and temperature measurement in civil application

Published: 19 August 2024

Volume 20, pages 531–536, (2024) Cite this article

Optoelectronics Letters

Aims and scope

Submit manuscript

Somesh Nandi, Chethana K. 🖂, T. Srinivas & Preeta Sharan

90 Accesses Explore all metrics \rightarrow

Abstract

Optical fiber Bragg grating (FBG) sensors have advanced significantly in the last several years. The use of innovative FBG in temperature and pressure measurement is examined in this study. The benefits of FBGs, such as their compact size, low weight, resilience to corrosion, immunity to electromagnetic interference, distributed sensing, and remote monitoring, have brought attention to the growing research in this field of structural health monitoring of civil infrastructures. In this investigation, a novel model is proposed and implemented using ANSYS workbench and GratingMOD tool. It is shown that the central

< Back	
Advertise	
Journal of Healthcare Engineering / Volume 2021, Issue 1 / 1563844	
Review Article 🔂 Open Access 💿 🛈	

A Survey of Soft Computing Approaches in Biomedical Imaging

Manju Devi, Sukhdip Singh, Shailendra Tiwari, Subhash Chandra Patel, Melkamu Teshome Ayana 🔀

First published: 03 August 2021 https://doi.org/10.1155/2021/1563844 Citations: 9

Academic Editor: Jiawen Kang

Abstract

Medical imaging is an essential technique for the diagnosis and treatment of diseases in modern clinics. Soft computing plays a major role in the recent advances in medical imaging. It handles uncertainties and improves the qualities of an image. Until now, various soft computing approaches have been proposed for medical applications. This paper discusses various medical imaging modalities and presents a short review of soft computing approaches such as fuzzy logic, artificial neural network, genetic algorithm, machine learning, and deep learning. We also studied and compared each approach used for other imaging modalities based on the certain parameter used for the system evaluation. Finally, based on comparative analysis, the possible research strategies for further development are proposed. As far as we know, no previous work examined this issue.

1. Introduction

Medical imaging offers a noninvasive technique to look at the practical and structural information of internal organs. Currently, in medical imaging, a wide number of different image modalities are used. These modalities enable the radiologist to acquire a perfect spatial resolution in a noninvasive manner, typically providing the three-dimensional view of the anatomical and functional behaviour of the internal structure of human bodies like the heart,

Log in

∑ Menu

 \boldsymbol{Q} Search

ঢ় Cart

Home International Journal of Information Technology Article

Highly sensitive lab-on-chip with deep learning AI for detection of bacteria in water

Original Research Published: 16 September 2019 Volume 12, pages 495–501, (2020) Cite this article

International Journal of Information Technology

Aims and scope

Submit manuscript

Shaikh Afzal Nehal 🔀, Debpriyo Roy, Manju Devi & T. Srinivas

 \bigcirc 812 Accesses i 11 Citations \bigcirc 2 Altmetric Explore all metrics →

Abstract

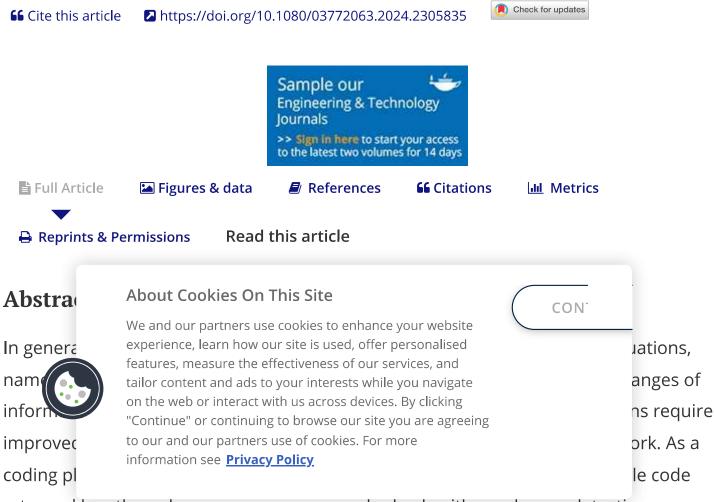
Artificial Intelligence (AI) has provided a new insight on how to make better predictions in water quality. AI uses convolutional neural networks (CNN) modeled after the human brain. In this work we have started implementing deep learning techniques to predict level of bacterial contaminants in water. A look-up table is used to classify the level of sensing parameters based on signature of the bacteria. AI will be very helpful for accurate prediction based on signature as identified by the sensor. We have simulated an AI-based lab-on-chip application platform that can detect the contamination using the output from Photonic Crystal based optical biosensor. The presence of bacteria in water changes the output

Q

Home ► All Journals ► IETE Journal of Research ► List of Issues ► Volume 70, Issue 8 ► Evaluating Puncture and Non-puncture for

IETE Journal of Research >

Volume 70, 2024 - Issue 8


3500ViewsCrossRef citations to dateAltmetric

Computers and Computing

Evaluating Puncture and Non-puncture for the Turbo Code Model based on AWGN Channel with 16-QAM

R. Rashmi 🔽 & Manju Devi

Pages 6791-6801 | Published online: 22 Apr 2024

rate, and length, and crossover programmed rehash with good error-detecting

12/6/24, 2:01 PM

Evaluating Puncture and Non-puncture for the Turbo Code Model based on AWGN Channel with 16-QAM: IETE Journal of Researc...

capability. The execution boundaries of 5G advancements are normal and are tens and thousands of times better compared with 4G. In this paper, the evaluations of puncturing and non-puncturing for turbo code depending on the minimization of penetrating of efficient pieces are discussed. It also provides penetrating of equality pieces considering additive white Gaussian noise (AWGN) Channel with 16 quadrature amplitude modulation (QAM) to attain high spectral efficiency. In addition to this, the super encoder encodes the separated progression with a code speed of 1/3. The code block association progressively connects the yields from the super encoder. The sign mapper employed in this paper adjusts the progression using a 16-QAM balance. Also, the mapper takes effective pieces, one uniformity bit from the upper encoder, and the deinterleaved equity bit from the base encoder. The Orthogonal frequency-division multiplexing (OFDM) mapper parts into more modest equivalent channels, named subcarriers and the information is sent on these equivalent channels at a reduced rate. **Q KEYWORDS:** 5G AWGN Channel Channel coding Iterative decoding algoritm Puncturing Non-Puncturing QAM Turbo code

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Notes o

About Cookies On This Site

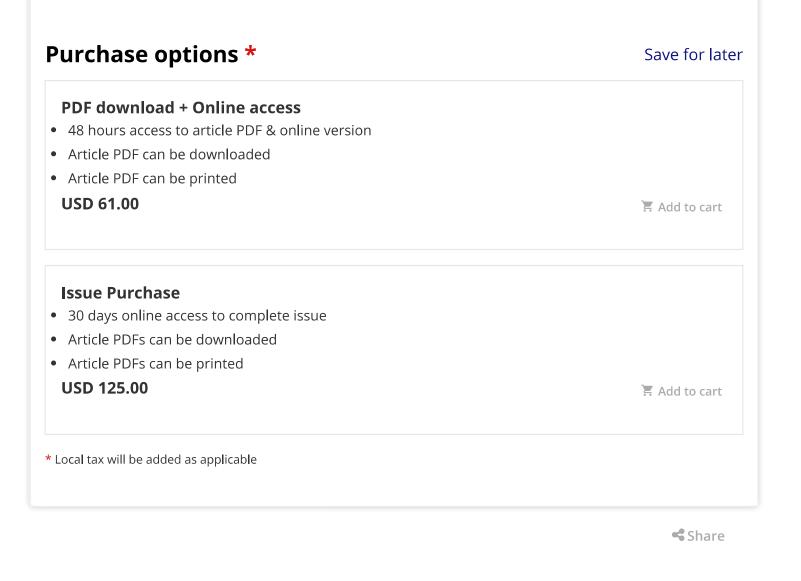
We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. By clicking "Continue" or continuing to browse our site you are agreeing to our and our partners use of cookies. For more information see <u>Privacy Policy</u>

R. Rashmi

Rashmi R is currently working in the Department of Electronics and Communication Engineering at Vemana Institute of Technology, Bengaluru. She obtained her BE and MTech degrees in digital communication and networking. She has 10 years of experience in teaching and administration. Her area of research includes digital communication. She has published more than 7 papers in national and international journals. She is a member of professional bodies such as ISTE, IACSIT, IAENG, and IFERP.

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. By clicking "Continue" or continuing to browse our site you are agreeing to our and our partners use of cookies. For more information see **Privacy Policy**


Manju Devi

Manju Devi is working in the Department of ECE at The Oxford College of Engineering Bangalore. She has worked as vice-principal and professor at BTLIT, Bangalore. She obtained her BE (ECE) degree in 1996 from Anna University, her MTech degree in applied electronics from BMSCE, and a PhD from Visvesvaraya Technological University (VTU), Karnataka. She has twenty-four years of academic teaching experience and worked for both NBA and NAAC. She has 75 publications in international conferences and journals. She is guiding eight students from Visvesvaraya Technological University, Karnataka. Her areas of interest are VLSI design, analog and mixed-mode VLSI design and digital electronics. **E-mail:** <u>manju3devi@gmail.com</u>

Log in via your institution

> Acc	About Cookies On This Site
Log ir	We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and
> Log	tailor content and ads to your interests while you navigate on the web or interact with us across devices. By clicking "Continue" or continuing to browse our site you are agreeing
Resto	to our and our partners use of cookies. For more information see <u>Privacy Policy</u>

> Restore content access for purchases made as guest

Related Research 🚯

Pe	eople also read	Recommended articles	Cited by
D2D Self	About Cookies We and our partne	5 On This Site ers use cookies to enhance your website	
B. Muth IETE Jour Published FPN-D-I	features, measure tailor content and on the web or inte "Continue" or cont	how our site is used, offer personalised the effectiveness of our services, and ads to your interests while you navigate eract with us across devices. By clicking tinuing to browse our site you are agreeing rtners use of cookies. For more <u>rivacy Policy</u>	

12/6/24, 2:01 PM Evaluating Puncture and Non-puncture for the Turbo Code Model based on AWGN Channel with 16-QAM: IETE Journal of Researc...

Zuopeng Zhao et al. IETE Journal of Research Published online: 14 Oct 2021

TEE-AODV Trust-based Route Selection and Improving Energy Efficiency in MANET >

M. Udhayamoorthi et al. IETE Journal of Research Published online: 31 Mar 2024

View more

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. By clicking "Continue" or continuing to browse our site you are agreeing to our and our partners use of cookies. For more information see **Privacy Policy**

Information for	Open access
Authors	Overview
R&D professionals	Open journals
Editors	Open Select
Librarians	Dove Medical Press
Societies	F1000Research
Opportunities	Help and information
Reprints and e-prints	Help and contact
Advertising solutions	Newsroom
Accelerated publication	All journals
Corporate access solutions	Books

Keep up to date

Register to receive personalised research and resources by email

Copyright © 2024 Informa IIK Limited Privacy policy Cookies Terms &

conditions About Cookies On This Site

Registered ir 5 Howick Pla We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. By clicking "Continue" or continuing to browse our site you are agreeing to our and our partners use of cookies. For more information see <u>Privacy Policy</u>

Advances and Challenges in Science and Technology Vol. 9

(https://stm.bookpi.org/ACST-V9/index)

Home (https://stm.bookpi.org/ACST-V9/index) / Books

/ Advances and Challenges in Science and Technology Vol. 9 (https://stm.bookpi.org/ACST-V9/issue/view/1267)

/ Chapters

Advances and Challenges in Science and Technology

Vol. 9

Edited by Prof. Shi-Hai Dong

Comparison of Face Recognition Using PCLDA and Neural Network V. Vijaya Kumari

Advances and Challenges in Science and Technology Vol. 9, 30 November 2023, Page 139-152 https://doi.org/10.9734/bpi/acst/v9/6966C (https://doi.org/10.9734/bpi/acst/v9/6966C) Published, 2023-11-30

View Article

iston 🇰 Cite 🖌 Statistics 🔟 Share

Abstract

Facial recognition is a complex multidimensional structure that demands sophisticated computing techniques for authent cation purpose. In this paper, we introduce the Integral Normalized Gradient Image (INGI) algorithm with various normalizing stages. The system comprises a novel illumination insensitive preprocessing method, a hybrid Fourier based feature extraction and matching process. The Pre-processing method is grounded in the analysis of the facial imaging model, considering

intrinsic and extrinsic factors of the human face. Feature extraction encompasses hybrid Fourier features extracted from different frequency bands and multiple face models. By deriving Fourier features from three Fourier domains and three distinct frequency bandwidths, we acquired additional complementary features. These features are individually classified using Principal Component and Linear Discriminant Analysis (PCEDA). This approach enables in analyzing a face image from the various viewpoints for identity recognition. Furthermore, we propose multiple face models based on different eye positions with a same image size. This contributes significantly to enhancing the performance of the proposed system. Recognition is achieved through Euclidean Distance and Neural Network based classifier, resulting in a recognition accuracy of approximately 89.23% for the Euclidean Distance classifier-based model and 93.40% for Back Propagation Neural Network Classifier.

Comparison of Face Recognition Using PCLDA and Neural Network | Advances and Challenges in Science and Technology Vol. 9

(https://stourds:okptiegrg/Accorrely/iesug/aidion/1267/hear discriminant analysis; neural network; Euclidean

distance classifier; feature (https://stm.bookpi.org/ACST-V9/issue/view/1267)

© BP International

Implementation of Wireless Quick Response Code Using MCU ESP8266

Dr.V.Vijaya Kumari,Professor Department of Electronics and Communication Engineering, The Oxford College of Engineering,Bangalore-560 068

Abstract

QR scanners are seen in almost all places and the aim of this paper is to revolutionize information accessibility by providing a seamless Wi-Fi- based solution by eliminating the need for Quick Response scanners. To achieve this we use server-client communication method, where the NODE Micro Controller Unit (ESP8266) functions as the server, while a mobile application serves as the client. By leveraging this technology, users will be able to effortlessly retrieve data within their proximity without the need for QR codes, enhancing convenience and improving overall accessibility.

Keywords: Scanner, server, client, communication, node MCU ,mobile data

1.Introduction

In today's fast-paced world, people are constantly on the go, and time is of the essence. One common issue that people face in busy places such as airports, train stations, and shopping malls is the difficulty of scanning QR codes quickly and efficiently. Traditional QR codes require users to scan a physical code within a small distance to read the information, which can be inconvenient and time-consuming in crowded or busy environments.

To solve this problem, wireless QR technology can be implemented, which allows users to read information stored on a local server without the need for physical scanning. With wireless QR, the user's device (such as a smartphone or tablet) can read the information remotely, eliminating the need for physical scanning. This technology uses serverclient communication through Wi-Fi to send information from the server to the client when a request is made within a specific range. This range can be customized to suit the needs of the application.

Client-Server Based Applications examines exploring their architecture, functionalities, and potential research opportunities. The author various discusses aspects such as communication protocols, data storage. security, and scalability, highlighting the importance of client-server models in modern computing systems. The paper offers insights into current trends and identifies areas for further investigation in this field[1]. This study provides a comprehensive analysis of clientserver architecture, focusing on the utilization of the HTTP protocol for efficient data transmission. The explores paper the functionalities and interactions between clients and servers in this model, highlighting the role of HTTP in facilitating communication and data exchange[2]. A novel approach for controlling a prosthetic hand using an ESP8266 Wi-Fi module and an Android application describes the design and implementation of the interface, which enables users to manipulate the prosthetic hand wirelessly through their mobile devices. The study showcases the potential of integrating Wi-Fi technology and mobile applications in enhancing the functionality and accessibility of prosthetic devices, opening up new possibilities for improving the quality of life for individuals with limb impairments [3] The system for controlling electric switches using an Android application via Wi-Fi. The authors describe the design and implementation of the system, which allows users to remotely switch on or off electrical devices through their mobile devices [4]. By providing a userfriendly interface and wireless connectivity, the proposed system offers an innovative solution for remote switch control, contributing to improved energy management and automation in residential settings [5]. By leveraging Wi-Fi technology, the proposed system offers convenient widespread and access to information, contributing to improved accessibility in various connectivity and environments [6].

2.METHODS

In order to enable communication between an ESP8266 NodeMCU board and a mobile application, it is necessary to establish a Wi-Fi connection that facilitates the exchange of data without requiring a connection to the internet. This can be accomplished by configuring sever client communication between the devices where ESP8266 acts as an access point or server and the mobile application as a station or client as in Fig 1.

IJRAR.ORG

E-ISSN: 2348-1269, P-ISSN: 2349-5138

INTERNATIONAL JOURNAL OF RESEARCH AND ANALYTICAL REVIEWS (IJRAR) | IJRAR.ORG

An International Open Access, Peer-reviewed, Refereed Journal

IR Wireless Underwater Communication System: A Survey of Underwater Wireless Sensor Networks

V.Vijaya Kumari¹, Rakshitha h², Umme kulsum³, Shambhavi vn⁴, Sakshi Gadig⁵

¹Professor,²⁻⁵UG students, Department of Electronics and Communication Engineering

The Oxford College of Engineering, Bangalore, India

Abstract:Ir wireless underwater communication system was motivated by the need for robust and flexible solutions that can satisfy the requirements for the rapid development of the underwater wireless sensor networks. This survey paper identifies the key requirements for achieving essential services as well as common platforms and also contributes the critical elements in underwater wireless sensor networks by classifying on architectural elements. communications, routing protocol and standards, security, and applications of underwater wireless sensor networks

The aim of this paper delves into the role of underwater wireless communication technology as well as signal processing techniques for improve the capability of data communication in underwater environment. We discuss the underwater wireless sensor networks, such as underwater acoustic networks, Ip network, in ir wireless underwater communication system and their impact on usability and efficiency.

By presenting a comprehensive review of the latest advancements and challenges in the field, this survey paper offers insights into the future potential of ir wireless underwater communication system. We identify emerging trends and research directions that could shape the evolution of underwater systems, paving the way for more personalized and efficient smart communication. **Keywords-**underwater Sensor Networks, acoustic communication, ocean environment, wireless sensor network

1. Introduction

IR based underwater communication system that can be used for wireless communication of messages in water. The system is very cheap alternative to long heavy physical wires that run through seas, rivers and require large wires and their maintenance.

The design of the project is to focus on the transmitting light signal from the transmitter end to the receiver end using the infrared light radiation equipment in underwater and this design is said to be underwater wireless communication system.

This survey aims to provide paper а comprehensive overview of efficient and affordable IR wireless underwater communication system using the Raspberry Pi Pico that can be used for underwater various application including exploration and monitoring. The paper explores the different types of underwater communication and methodologies used in this field, as well as the latest advancements in sensor technology.

Theory and Applications of Engineering Research Vol. 8

(https://stm.bookpi.org/TAER-V8/index)

Home (https://stm.bookpi.org/TAER-V8/index) / Books

/ Theory and Applications of Engineering Research Vol. 8 (https://stm.bookpi.org/TAER-V8/issue/view/1405)

/ Chapters

Theory and Applications of Engineering Research

Vol. 8

Edited by Prof. Rachid Masrour

Survey on Timing Error Detection and Correction Methods for Fir Filter Applications

V. P. Krishnammal ; V. Vijayakumari

Theory and Applications of Engineering Research Vol. 8, 15 March 2024, Page 68–7 https://doi.org/10.9734/bpi/taer/v8/8958A (https://doi.org/10.9734/bpi/taer/v8/8958 **Published:** 2024-03-15

'iew Article 📃 👘 Re

Review History 🌐 🦳 Cite 💕

Abstract

This paper presents the literature review on the various timing error analysis techniques involved in attaining power reduction in several computing applications, specifically for digital signal processing. FIR filters are widely used because they have linear phase characteristics, guarantee stability and are easy to implement with multipliers, adders and delay elements. The development

Shar

of a high-performance FIR filter is crucial in order to satisfy the demands of various applications, including real-time, low power, low cost, and compact space. Using a razor flip-flop to scale voltage is a clever way to get rid of the supply voltage margin. The technique of Dynamic Voltage Scaling (DVS) in conjunction with Razor is employed to dentify timing issues on the Critical Path. In DSP based applications, image compression and video compression are based on error tolerant; if there are errors in the intermediate outputs it will not form substantial reduction in final output quality. In this paper various Razor approach to Dynamic voltage scaling and Razor Flip-flops in filtering applications are discussed and extensive survey on features of FIR Filter design was reported. In this paper, various types of timing error detection and correction method is discussed to achieve low power consumption, less area, high speed and reduced computation time. Razor based voltage (https://sign.bad.pings/FAER-W8/file5.jion.

(https://stm.bookpi.org/TAER-V8/issue/view/1405)

Survey on Timing Error Detection and Correction Methods for Fir Filter Applications | Theory and Applications of Engineering Resea...

Keywords: Dynamic voltage scaling (DVS); finite impulse response (FIR) filter; razor flip-flop; multipliers

© BP International

International Journal of Engineering and Manufacturing (IJEM)

IJEM Vol. 14, No. 3, 8 Jun. 2024

Cover page and Table of Contents: PDF (size: 1031KB)

MECS Press Journal

<u>Home</u>

Latest News & Events

<u>Archives</u>

Editorial Board

Publishing Policies

Aims and Scope

Author Guidelines

<u>Submission</u>

Peer Review Process

Become a member

Indexing

Special Issues

Article Processing Charge

Publication Ethics and Malpractice Statement

Modern Education and Computer Science

Control of Switched Reluctance Motor and Noise Reduction Using Fuzzy Controller in Matlab/Simulink

PDF (1031KB), PP.36-47

Views: 142 Downloads: 32

Author(s)

<mark>擧 B. Srilatha</mark> ^{1,*} 🤱 <u>Sheeba Kumari C</u> ¹ 🔱 <u>Tina Elizabeth Thomas</u> ¹

1. Department of Electronics & Communication Engineering, The Oxford College of Engineering, Bangalore-68, India * Corresponding author.

DOI: https://doi.org/10.5815/ijem.2024.03.04

Received: 19 Jan. 2024 / Revised: 6 Feb. 2024 / Accepted: 4 Mar. 2024 / Published: 8 Jun. 2024

Index Terms

Switched Reluctance Motor (SRM), fuzzy logic controller, acoustic noise, radial force, MATLAB/Simulink

Abstract

Switched Reluctance Motor (SRM) has been successfully used for its excessive efficiency and higher strength to torque ratio. However, the only demerit it has its radial pressure and acoustic noise. When SRM achieves higher speeds, it tends to generate more force between stator and as a result acoustic noise with higher decibels is a concern. In this paper, a layout is used for reduction of both radial force and acoustic noise for eight/6 SRM using the fuzzy logic controller by controlling the speed and current as a feedback loop. The mathematical models are framed to resolve glitches associated to radial pressure and acoustic noise. In this proposed method the SRM produces a very low noise level when it rotates at the speed of 1200 RPM. This method also has been implemented in MATLAB/Simulink platform mainly to reduce the acoustic noise at higher speed in SRM.

Cite This Paper

B. Srilatha, Sheeba Kumari C, Tina Elizabeth Thomas, "Control of Switched Reluctance Motor and Noise Reduction Using Fuzzy Controller in Matlab/Simulink", International Journal of Engineering and Manufacturing (IJEM), Vol.14, No.3, pp. 36-47, 2024. DOI:10.5815/ijem.2024.03.04

Reference

[1]"Acoustic Noise Reduction of Switched Reluctance Motor Drives", by M Divandari, Middle East Journal of Scientific Research, ISSN 1990-9233, 2011
[2]Gobbi, R, 2009, "Fuzzy iterative Technique for Torque ripple minimization in SRM", Electrical Power components and system, 982-1004.
[3]Anwar M N, 2000, "Radial force Calculation and acoustic noise reduction in SRM", IEEE Transactions on Industry Applications, 1589-1597.
[4]Lin F C, "An approach to producing controlled radial force in SRM", IEEE Transactions on Industrial Electronics, 2137-2146

[5]Cameron D E, 1992, "The origin and Reduction of Acoustic Noise in Doubly Salient Variable Reluctance Motor, IEEE Transactions on Industry Applications, 1250-1255

[6]Zhang J, 2009, "Nonlinear Radial force simulation of SRM based on finite element Model, IEEE International Conference 1678-1682 [7]Krishnan R, 2001, SRM Drives, Florida, CRC Press LLC

[8]Divandari M, 2007, "A Novel Sensor less SRM Drive via Hybrid Observer of current sliding Mode and Flux linkage", IEEE International conference, 45-49 [9]Rekha P, 2021, "Torque ripple and noise control of SRM using adaptive fuzzy PI control with aid of AR algorithm", International Journal of Power Electronics and Drive system, 1239-1251.

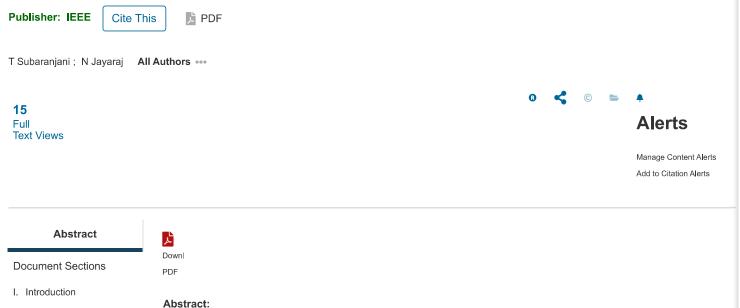
[10]Hayder Salim Hameed, Qasim Al Azze, Mohammed Saadi Hasan,2023, "Speed control of switched reluctance motors based on fuzzy logic controller and MATLAB/Simulink", Indonesian Journal of Electrical Engineering and Computer Science Vol. 31, No. 2, August 2023, pp. 647~657 ISSN: 2502-4752, DOI: 10.11591/ijeecs.v31.i2.pp647-657.

[11]F. Al-Amyal, M. Hamouda, and L. Számel, "Performance improvement based on adaptive commutation strategy for switched reluctance motors using direct torque control," Alexandria Engineering Journal, vol. 61, no. 11, pp. 9219–9233, 2022, doi: 10.1016/j.aej.2022.02.039.

[12]Pushparajesh et al, "Direct Torque Control Based Jelly Fish Algorithm For Torque Ripple Reduction in Permanent Magnet Synchronous Motor, Conference" 2023 International Conference on Network, Multimedia and Information Technology (NMITCON).

[13]Mingyao Ma et al, 2020"Torque ripple suppression of switched reluctance motor by segmented harmonic currents injection based on adaptive fuzzy logic control"IET Electric Power Applications.

[14]Inanc, N., Ozbulur, V.: Torque Ripple Minimization of a Switched Reluctance Motor by using Continuous Sliding Mode Control Technique. Electric Power Systems Research 66(3), 241–251 (2003).


[15]Sahoo, S.K., Panda, S.K., Xu, J.-X.: Indirect Torque Control of Switched Reluctance Motors using Iterative Learning Control. IEEE Transaction on Power Electronics 20(1) (January 2005).

[16]W. Cai, P. Pillay, and Z. Tang, "Impact of Stator Windings and End-Bells on Resonant Frequencies and Mode Shapes of Switched Reluctance Motors", IEEE Trans. on Industry Applications 38, 2002.

12/6/24, 2:22 PM Advanced Neural Network Approaches for Distinguishing Real from Synthetic in GAN-generated Data Authenticity Challenges | IEE... IEEE.org IEEE Xplore IEEE SA IEEE Spectrum More Sites Donate Cart Create Account Personal Sign In ÷) Access provided by: Sign Out Browse 🗸 My Settings 🗸 Help 🗸 The Oxford College of Engineering Access provided by: Sign Out The Oxford College of Engineering All Q ADVANCED SEARCH

Conferences > 2024 11th International Confe... ?

Advanced Neural Network Approaches for Distinguishing Real from Synthetic in GAN-generated Data Authenticity Challenges

challenge arises: discerning real instances from synthetic... View more

authenticity and integrity in data-driven domains.

II. Literature Survey

III. Proposed Model

IV. Results and Discussion

Metadata

Abstract:

V. Conclusion

Authors

Figures

References

Keywords

Metrics

More Like This

Published in: 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom)

Amid the transformative advancements of Generative Adversarial Networks (GANs) in machine learning, a pertinent

Amid the transformative advancements of Generative Adversarial Networks (GANs) in machine learning, a pertinent challenge arises: discerning real instances from synthetic ones. This research introduces a novel neural network model meticulously tailored to differentiate between genuine tasks and those artfully crafted by GANs. The paper elaborates

on the unique architectural design and optimization techniques employed, offering a comprehensive insight into the model's development and testing phases. Empirical evaluations reveal an unparalleled accuracy rate, underscoring the

model's practicality and efficacy. Notwithstanding its high precision and recall balance, the study identifies potential areas of refinement, ensuring its adaptability to future GAN sophistications. As the realm of artificial data generation

continues to evolve, this research stands as a beacon, advancing the understanding and tools essential for maintaining

Date of Conference: 28 February 2024 - 01 March 2024 DOI: 10.23919/INDIACom61295.2024.10499002

International Journal of Engineering and Manufacturing (IJEM)

IJEM Vol. 14, No. 3, 8 Jun. 2024

Cover page and Table of Contents: PDF (size: 1031KB)

MECS Press Journal

<u>Home</u>

Latest News & Events

<u>Archives</u>

Editorial Board

Publishing Policies

Aims and Scope

Author Guidelines

<u>Submission</u>

Peer Review Process


Become a member

Indexing

Special Issues

Article Processing Charge

Publication Ethics and Malpractice Statement

- Free Online access
- Peer-reviewed
- Fast publication
- Direct citation by DOI
- High visibility
- More citations

• Free indexing service

Control of Switched Reluctance Motor and Noise Reduction Using Fuzzy Controller in Matlab/Simulink

PDF (1031KB), PP.36-47

Views: 144 Downloads: 32

Author(s)

臱 <u>B. Srilatha</u> ^{1,*} 🤱 <u>Sheeba Kumari C</u> ¹ 🔱 <u>Tina Elizabeth Thomas</u> ¹

1. Department of Electronics & Communication Engineering, The Oxford College of Engineering, Bangalore-68, India * Corresponding author.

DOI: https://doi.org/10.5815/ijem.2024.03.04

Received: 19 Jan. 2024 / Revised: 6 Feb. 2024 / Accepted: 4 Mar. 2024 / Published: 8 Jun. 2024

Index Terms

Switched Reluctance Motor (SRM), fuzzy logic controller, acoustic noise, radial force, MATLAB/Simulink

Abstract

Switched Reluctance Motor (SRM) has been successfully used for its excessive efficiency and higher strength to torque ratio. However, the only demerit it has its radial pressure and acoustic noise. When SRM achieves higher speeds, it tends to generate more force between stator and as a result acoustic noise with higher decibels is a concern. In this paper, a layout is used for reduction of both radial force and acoustic noise for eight/6 SRM using the fuzzy logic controller by controlling the speed and current as a feedback loop. The mathematical models are framed to resolve glitches associated to radial pressure and acoustic noise. In this proposed method the SRM produces a very low noise level when it rotates at the speed of 1200 RPM. This method also has been implemented in MATLAB/Simulink platform mainly to reduce the acoustic noise at higher speed in SRM.

Cite This Paper

B. Srilatha, Sheeba Kumari C, Tina Elizabeth Thomas, "Control of Switched Reluctance Motor and Noise Reduction Using Fuzzy Controller in Matlab/Simulink", International Journal of Engineering and Manufacturing (IJEM), Vol.14, No.3, pp. 36-47, 2024. DOI:10.5815/ijem.2024.03.04

Reference

[1] "Acoustic Noise Reduction of Switched Reluctance Motor Drives", by M Divanderi, Middle East Journal of Scientific Research, ISSN 1990-9233, 2011
 [2] Gobbi, R, 2009, "Fuzzy iterative Technique for Torque ripple minimization in SRM", Electrical Power components and system, 982-1004.
 [3] Anwar M N, 2000, "Radial force Calculation and acoustic noise reduction in SRM", IEEE Transactions on Industry Applications, 1589-1597.
 [4] Lin F C, "An approach to producing controlled radial force in SRM", IEEE Transactions on Industrial Electronics, 2137-2146

[5]Cameron D E, 1992, "The origin and Reduction of Acoustic Noise in Doubly Salient Variable Reluctance Motor, IEEE Transactions on Industry Applications, 1250-1255

[6]Zhang J, 2009, "Nonlinear Radial force simulation of SRM based on finite element Model, IEEE International Conference 1678-1682 [7]Krishnan R, 2001, SRM Drives, Florida, CRC Press LLC

[8]Divandari M, 2007, "A Novel Sensor less SRM Drive via Hybrid Observer of current sliding Mode and Flux linkage", IEEE International conference, 45-49 [9]Rekha P, 2021, "Torque ripple and noise control of SRM using adaptive fuzzy PI control with aid of AR algorithm", International Journal of Power Electronics and Drive system, 1239-1251.

[10]Hayder Salim Hameed, Qasim Al Azze, Mohammed Saadi Hasan,2023, "Speed control of switched reluctance motors based on fuzzy logic controller and MATLAB/Simulink", Indonesian Journal of Electrical Engineering and Computer Science Vol. 31, No. 2, August 2023, pp. 647~657 ISSN: 2502-4752, DOI: 10.11591/ijeecs.v31.i2.pp647-657.

[11]F. Al-Amyal, M. Hamouda, and L. Számel, "Performance improvement based on adaptive commutation strategy for switched reluctance motors using direct torque control," Alexandria Engineering Journal, vol. 61, no. 11, pp. 9219–9233, 2022, doi: 10.1016/j.aej.2022.02.039.

[12]Pushparajesh et al, "Direct Torque Control Based Jelly Fish Algorithm For Torque Ripple Reduction in Permanent Magnet Synchronous Motor, Conference" 2023 International Conference on Network, Multimedia and Information Technology (NMITCON).

[13]Mingyao Ma et al, 2020"Torque ripple suppression of switched reluctance motor by segmented harmonic currents injection based on adaptive fuzzy logic control" IET Electric Power Applications.

[14]Inanc, N., Ozbulur, V.: Torque Ripple Minimization of a Switched Reluctance Motor by using Continuous Sliding Mode Control Technique. Electric Power Systems Research 66(3), 241–251 (2003).

[15]Sahoo, S.K., Panda, S.K., Xu, J.-X.: Indirect Torque Control of Switched Reluctance Motors using Iterative Learning Control. IEEE Transaction on Power Electronics 20(1) (January 2005).

[16]W. Cai, P. Pillay, and Z. Tang, "Impact of Stator Windings and End-Bells on Resonant Frequencies and Mode Shapes of Switched Reluctance Motors", IEEE Trans. on Industry Applications 38, 2002.

$\textbf{SPRINGERNATURE}\ Link$

Q Search

Login

∑ Menu

🔁 Cart

Home Journal of Optics Article

Measurement model of integrated FBG sensor for beam structure

Research Article Published: 20 October 2023

Volume 53, pages 2355–2360, (2024) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Somesh Nandi, K. Chethana, T. Srinivas & Preeta Sharan 🖂

5 102 Accesses Explore all metrics \rightarrow

Abstract

Fibre Bragg grating sensors are investigated in various structural health monitoring systems. Most of these research used a variety of FBG sensors to assess the structures' temperature and strain. The FBG sensor is combined with two fixed and cantilever beam structures in the proposed study. A wide range of pressure and temperature are considered during the analysis. In different circumstances, the range of wavelength shift obtained has been evaluated. In mathematical modelling, the definition of the correlation between variables has been taken into consideration using linear regression approaches. The fixed beam model demonstrated good agreement with a *R*-squared score of 96%. For a cantilever beam, *R* squared was 88%. The obtained wavelength range of the cantilever beam is larger,

$\textbf{SPRINGERNATURE}\ Link$

Q Search

Login

∑ Menu

🔆 Cart

Home Journal of Optics Article

Measurement model of integrated FBG sensor for beam structure

Research Article Published: 20 October 2023

Volume 53, pages 2355–2360, (2024) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Somesh Nandi, K. Chethana, T. Srinivas & Preeta Sharan 🖂

5 102 Accesses Explore all metrics \rightarrow

Abstract

Fibre Bragg grating sensors are investigated in various structural health monitoring systems. Most of these research used a variety of FBG sensors to assess the structures' temperature and strain. The FBG sensor is combined with two fixed and cantilever beam structures in the proposed study. A wide range of pressure and temperature are considered during the analysis. In different circumstances, the range of wavelength shift obtained has been evaluated. In mathematical modelling, the definition of the correlation between variables has been taken into consideration using linear regression approaches. The fixed beam model demonstrated good agreement with a *R*-squared score of 96%. For a cantilever beam, *R* squared was 88%. The obtained wavelength range of the cantilever beam is larger,

12/6/24, 2:27 PM An investigation of stress and temperature analysis at the rail-wheel contact using an optical simulation study | IEEE Conference P...

IEEE.org	IEEE Xplore	IEEE SA	IEEE Spectrum	More Sites		Donate Car	t Create Account	Personal Sign In
≡			Browse 🗸	My Settings 🗸	Help 🗸	Access provided by: The Oxford College of Engineering	Sign Out	
Access pro The Oxford Engineerin	d College of	Sign Out						
	All		•				Q ADVANCED SEARCH	I

Conferences > 2024 IEEE International Confe...

An investigation of stress and temperature analysis at the rail-wheel contact using an optical simulation study

Publisher: IEEE Cite This PDF						
Deepa. N; Sneha Sharma; F	Preeta Sharan ; Ruchira Srinidhi All Authors •••					
1 19	0 🥰 © 📂 🌲					
Cites in Full Paper Text Views	Alerts					
	Manage Content Alerts Add to Citation Alerts					
Abstract						
Document Sections	Downl PDF					
I. Introduction	Abstract:					
II. APPLIED TECHNOLOGY	This study investigates static stress and temperature analysis of rail wheels at varying speeds using finite element analysis (FEA) and fiber Bragg grating (FBG) sensors View more					
III. MODEL ANALYSIS	✓ Metadata					
IV. Using the Template	Abstract: This study investigates static stress and temperature analysis of rail wheels at varying speeds using finite element					
V. RESULTS	analysis (FEA) and fiber Bragg grating (FBG) sensors. ANSYS 2023 R2 software analyzes FEA behavior, focusing on					
Show Full Outline ▼	maximum and minimum equivalent strain and stress. Grating MOD in R-Soft simulates FBG sensor response to strain, resulting in wavelength variation. Results show higher speeds increase equivalent stress and strain, potentially					
Authors	damaging rail and wheel materials. FBG sensors monitor strain and temperature variations, guiding design optimization for improved performance and safety. Speeds from 10 to 100 kmph yield a strain sensitivity of 1.209 pm/με for Bragg's					
Figures	wavelength of 1550 nm, with corresponding FBG temperature sensitivity around 13 pm/°C.					
References	Published in: 2024 IEEE International Conference on Electronics, Computing and Communication Technologies					
Citations	(CONECCT)					
Keywords	Date of Conference: 12-14 July 2024 DOI: 10.1109/CONECCT62155.2024.10677308					

SPRINGER NATURE Link

Log in

💭 Cart

Ξ Menu

Q Search

Home Optoelectronics Letters Article

Investigation on FBG based optical sensor for pressure and temperature measurement in civil application

Published: 19 August 2024

Volume 20, pages 531–536, (2024) Cite this article

Optoelectronics Letters

Aims and scope

Submit manuscript

Somesh Nandi, Chethana K. 🖂, T. Srinivas & Preeta Sharan

90 Accesses Explore all metrics \rightarrow

Abstract

Optical fiber Bragg grating (FBG) sensors have advanced significantly in the last several years. The use of innovative FBG in temperature and pressure measurement is examined in this study. The benefits of FBGs, such as their compact size, low weight, resilience to corrosion, immunity to electromagnetic interference, distributed sensing, and remote monitoring, have brought attention to the growing research in this field of structural health monitoring of civil infrastructures. In this investigation, a novel model is proposed and implemented using ANSYS workbench and GratingMOD tool. It is shown that the central

$\textbf{SPRINGERNATURE}\ Link$

Login

∑ Menu

 Q Search


戸 Cart

Home Journal of Optics Article

A comprehensive review of using optical fibre interferometry for intrusion detection with artificial intelligence techniques

Research Article Published: 04 December 2024

(2024) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Hitesh Mehta, Nagaraj Ramrao & Preeta Sharan 🖂

Abstract

Security remains a critical concern in today's world, especially for protecting high-value assets and vital infrastructure such as refineries, petrochemical plants, government facilities, and military installations. Traditional security measures often fall short against increasingly sophisticated threats. To meet these challenges, perimeter intrusion detection systems (PIDS) have become indispensable. Optical fiber interferometry (OFI), an advanced sensing technology, provides key advantages for PIDS, including high sensitivity, real time monitoring, immunity to electromagnetic interference, and long-range coverage. This research explores the integration of OFI with machine learning and deep learning

ScienceDirect

Cryogenics Volume 143, October 2024, 103934

Highly sensitive one-dimensional Dielectric-Superconductor photonic crystal structure for low temperature sensing applications

Show more 🗸

😪 Share 🍠 Cite

https://doi.org/10.1016/j.cryogenics.2024.103934 ㅋ Get rights and content ㅋ

Highlights:

- A low temperature sensor is designed using 1-dimensional photonic crystal.
- Dielectric-superconductor layer is used as 1D photonic crystal sensor.
- Fabrication complexity is reduced by using single substrate (superconductor)
- For the first time, a very high sensitivity of 1.524nm/K is achieved.

Abstract

International Journal of Engineering and Manufacturing (IJEM)

IJEM Vol. 14, No. 3, 8 Jun. 2024

Cover page and Table of Contents: PDF (size: 1031KB)

MECS Press Journal

<u>Home</u>

Latest News & Events

<u>Archives</u>

Editorial Board

Publishing Policies

Aims and Scope

Author Guidelines

<u>Submission</u>

Peer Review Process

Become a member

Indexing

Special Issues

Article Processing Charge

Publication Ethics and Malpractice Statement

Modern Education and Computer Science

Control of Switched Reluctance Motor and Noise Reduction Using Fuzzy Controller in Matlab/Simulink

PDF (1031KB), PP.36-47

Views: 146 Downloads: 32

Author(s)

 <u>B. Srilatha</u> ^{1,*} 🄱 <u>Sheeba Kumari C</u> ¹ 🎩 <u>Tina Elizabeth Thomas</u> ¹

1. Department of Electronics & Communication Engineering, The Oxford College of Engineering, Bangalore-68, India * Corresponding author.

DOI: https://doi.org/10.5815/ijem.2024.03.04

Received: 19 Jan. 2024 / Revised: 6 Feb. 2024 / Accepted: 4 Mar. 2024 / Published: 8 Jun. 2024

Index Terms

Switched Reluctance Motor (SRM), fuzzy logic controller, acoustic noise, radial force, MATLAB/Simulink

Abstract

Switched Reluctance Motor (SRM) has been successfully used for its excessive efficiency and higher strength to torque ratio. However, the only demerit it has its radial pressure and acoustic noise. When SRM achieves higher speeds, it tends to generate more force between stator and as a result acoustic noise with higher decibels is a concern. In this paper, a layout is used for reduction of both radial force and acoustic noise for eight/6 SRM using the fuzzy logic controller by controlling the speed and current as a feedback loop. The mathematical models are framed to resolve glitches associated to radial pressure and acoustic noise. In this proposed method the SRM produces a very low noise level when it rotates at the speed of 1200 RPM. This method also has been implemented in MATLAB/Simulink platform mainly to reduce the acoustic noise at higher speed in SRM.

Cite This Paper

B. Srilatha, Sheeba Kumari C, Tina Elizabeth Thomas, "Control of Switched Reluctance Motor and Noise Reduction Using Fuzzy Controller in Matlab/Simulink", International Journal of Engineering and Manufacturing (IJEM), Vol.14, No.3, pp. 36-47, 2024. DOI:10.5815/ijem.2024.03.04

Reference

[1]"Acoustic Noise Reduction of Switched Reluctance Motor Drives", by M Divandari, Middle East Journal of Scientific Research, ISSN 1990-9233, 2011
[2]Gobbi, R, 2009, "Fuzzy iterative Technique for Torque ripple minimization in SRM", Electrical Power components and system, 982-1004.
[3]Anwar M N, 2000, "Radial force Calculation and acoustic noise reduction in SRM", IEEE Transactions on Industry Applications, 1589-1597.
[4]Lin F C, "An approach to producing controlled radial force in SRM", IEEE Transactions on Industrial Electronics, 2137-2146

[5]Cameron D E, 1992, "The origin and Reduction of Acoustic Noise in Doubly Salient Variable Reluctance Motor, IEEE Transactions on Industry Applications, 1250-1255

[6]Zhang J, 2009, "Nonlinear Radial force simulation of SRM based on finite element Model, IEEE International Conference 1678-1682 [7]Krishnan R, 2001, SRM Drives, Florida, CRC Press LLC

[8]Divandari M, 2007, "A Novel Sensor less SRM Drive via Hybrid Observer of current sliding Mode and Flux linkage", IEEE International conference, 45-49 [9]Rekha P, 2021, "Torque ripple and noise control of SRM using adaptive fuzzy PI control with aid of AR algorithm", International Journal of Power Electronics and Drive system, 1239-1251.

[10]Hayder Salim Hameed, Qasim Al Azze, Mohammed Saadi Hasan,2023, "Speed control of switched reluctance motors based on fuzzy logic controller and MATLAB/Simulink",Indonesian Journal of Electrical Engineering and Computer Science Vol. 31, No. 2, August 2023, pp. 647~657 ISSN: 2502-4752, DOI: 10.11591/ijeccs.v31.i2.pp647-657.

[11]F. Al-Amyal, M. Hamouda, and L. Számel, "Performance improvement based on adaptive commutation strategy for switched reluctance motors using direct torque control," Alexandria Engineering Journal, vol. 61, no. 11, pp. 9219–9233, 2022, doi: 10.1016/j.aej.2022.02.039.

[12]Pushparajesh et al, "Direct Torque Control Based Jelly Fish Algorithm For Torque Ripple Reduction in Permanent Magnet Synchronous Motor, Conference" 2023 International Conference on Network, Multimedia and Information Technology (NMITCON).

[13]Mingyao Ma et al, 2020"Torque ripple suppression of switched reluctance motor by segmented harmonic currents injection based on adaptive fuzzy logic control"IET Electric Power Applications.

[14]Inanc, N., Ozbulur, V.: Torque Ripple Minimization of a Switched Reluctance Motor by using Continuous Sliding Mode Control Technique. Electric Power Systems Research 66(3), 241–251 (2003).

[15]Sahoo, S.K., Panda, S.K., Xu, J.-X.: Indirect Torque Control of Switched Reluctance Motors using Iterative Learning Control. IEEE Transaction on Power Electronics 20(1) (January 2005).

[16]W. Cai, P. Pillay, and Z. Tang, "Impact of Stator Windings and End-Bells on Resonant Frequencies and Mode Shapes of Switched Reluctance Motors", IEEE Trans. on Industry Applications 38, 2002.

ScienceDirect

Measurement: Sensors

Volume 32, April 2024, 101067

Harris Hawks Optimization Algorithm for reducing THD using ZVT-ZCT-based QRCC: A comparative approach

Nisha C. Rani a $\stackrel{\circ}{\sim}$ \boxtimes , N. Amuthan $\stackrel{
ho}{\sim}$

Sł	low	more	\checkmark

🗮 Outline 🛛 😪 Share 🍠 Cite

https://doi.org/10.1016/j.measen.2024.101067 ↗ Get rights and content ↗

Under a Creative Commons license 🛪

open access

Abstract

This study proposes a novel solution to address harmonic issues in a <u>Renewable Energy</u> <u>Resource</u> System (RES) connected to the grid, using a <u>Voltage Source Inverter</u> (VSI) controlled by a QRCC based on Zero Voltage Transition and Zero Current Transition (ZVT-ZCT). We enhance <u>system performance</u> by integrating Harris Hawks Optimization (HHO) with the VSI. Key outcomes include evaluating the system's effectiveness in terms of voltage drop, current drop, real power, active power, and <u>total harmonic distortion</u> (THD). Notably, settling times for various converters are highlighted: 0.01 s for SEPIC, 0.008 s for CUK, 0.005 s for ZETA, and an impressive 0.0001 s for the Cascade converter. Under different operational conditions, open-loop operation yields a THD of 18.45%, reduced to 7.843% in closed-loop with <u>PI controller</u>. Optimization techniques further improve the system, achieving a low THD of 0.0549%. We emphasize the significance of MPPT-based INC-IR for cascade converters, resulting in a minimal switching loss of 0.38W, showcasing the system's efficiency in energy conversion.

IDEAS Printed from https://ideas.repec.org/a/wsi/srlxxx/v31y2024i11ns0218625x24300119.html

Oxidation Characteristics Of Thermal-Sprayed Cobalt-Based Superalloy Coatings: A Review

Author & abstract

Download <u>Related works & more</u>

Corrections

Author

Listed:

• S. SURESH KUMAR

(Department of Mechanical Engineering, RV Institute of Technology and Management, Bengaluru 560076, India†Visvesvaraya Technological University, Belagavi, Karnataka, India)

• M. RAVIPRAKASH

(��Department of Mechanical Engineering, The Oxford College of Engineering, Bengaluru, Karnataka, India)

• C. DURGA PRASAD

(Department of Mechanical Engineering, RV Institute of Technology and Management, Bengaluru 560076, India†Visvesvaraya Technological University, Belagavi, Karnataka, India)

• R. N. CHIKKANGOUDAR

(�Department of Mechanical Engineering, KLE Technological University. Dr. M S Sheshgiri Campus, Belagavi, Karnataka 590008, India)

 SHRISHAIL B. SOLLAPUR (ï¿¹/₂Department of IIAEM, Faculty of Engineering and Technology, JAIN (Deemed -to- be University),

Bengaluru, Karnataka 560069, India)

- YUGESH A. KHARCHE

 (��Department of Mechanical Engineering, Padmashri Dr. V. B. Kolte College of Engineering, Malkapur, Maharashtra, India)
- GAUTAM JALBA NARWADE (*Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India)

Registered:

Abstract

Superalloys go through cyclic oxidation which refers to the progression of reputed exposure of materials to alternating oxidizing and non-oxidizing environments at high temperatures. The oxidation behavior of cobalt-based superalloy coatings depends on several variables, including the environment, surface roughness, manufacturing conditions, & coating composition. Because of their higher temperatures and protective oxide layer, coatings with a greater cobalt concentration are more oxidation-resistant. The behavior of oxidation is influenced by surface roughness, where rough surfaces offer greater surface area to oxidation while smooth surfaces decrease interaction with the environment. The microstructure and porosity of the coating are further impacted by processing variables used in thermal spraying, including temperature, particles velocity, and spray distance. Adding reactive components to the coating composition, such as silicon and aluminum, and applying post-treatments like nitriding or sealing are two ways to increase oxidation resistance. A greater temperature and particle speed can lead to a denser with less porous covering, improving the oxidation process resistance. The two typically used heat spraying techniques are high-velocity oxyfuel (HVOF) and plasma spraying. To increase the resistance to oxidation of thermal spray cobalt-

based superalloy coating, some strategies have been devised, such as inclusion of reactive materials, such as aluminum and silicon, which is the coating composition. These elements may establish an oxide layer protecting the coating's appearance, preventing further oxidation.

Suggested Citation

S. Suresh Kumar & M. Raviprakash & C. Durga Prasad & R. N. Chikkangoudar & Shrishail B. Sollapur & Yugesh A. Kharche & Gautam Jalba Narwade, 2024. "<u>Oxidation Characteristics Of</u> <u>Thermal-Sprayed Cobalt-Based Superalloy Coatings: A Review</u>," <u>Surface Review and Letters</u> (<u>SRL</u>), World Scientific Publishing Co. Pte. Ltd., vol. 31(11), pages 1-12, November.

×

Handle: *RePEc:wsi:srlxxx:v:31:y:2024:i:11:n:s0218625x24300119*

DOI: 10.1142/S0218625X24300119

Export reference 🖸 as HTML

SPRINGER NATURE Link

Log in

∃ Menu

Q Search

ঢ় Cart

Home Journal of The Institution of Engineers (India): Series D Article

Elevated Temperature Stress Analysis of Cobalt-Based Composite Cladding by Microwave Process on Gas Turbine Rotor Blade Using FEA

ORIGINAL CONTRIBUTION Published: 26 March 2024

(2024) Cite this article

Journal of The Institution of Engineers (India): Series D

Aims and scope

Submit manuscript

<u>Shanthala Kollur, G. Veeresha</u> ∑, <u>S. M. Pushpavathi, K. Vanitha, R. Krupa, Amit Kumar, K. R.</u> <u>Varun & Y. Madhavi</u>

 \bigcirc 120 Accesses Explore all metrics →

Abstract

An electromagnetic field provides energy to the material directly during microwave processing. As a result, there are less thermal gradients and a quick heating of the entire material thickness. Additionally, volumetric heating can conserve energy and shorten production times. In the current study, a 900-W power level and 2.45-GHz microwave furnace were used to generate a cobalt-based coating on titanium substrate. The processing

$\textbf{SPRINGERNATURE}\ Link$

Login

∃ Menu

Q Search

Cart

Home Journal of The Institution of Engineers (India): Series D Article

Investigation of Mechanical and Metallurgical Properties of Friction Welded Joints for Dissimilar Metals (HSS M2 and EN8 Steel)

ORIGINAL CONTRIBUTION Published: 27 February 2024

(2024) Cite this article

Journal of The Institution of Engineers (India): Series D

Aims and scope

Submit manuscript

N. G. Siddeshkumar, C. Durga Prasad , R. Suresh, K. R. Varun, Santosh Patro, Sandeep Kore, Sanjay Ramchandra Pawar & T. A. Sudarshan

 \bigcirc 153 Accesses \bigcirc 13 Citations Explore all metrics →

Abstract

This study examines the effects of changing process parameters on the rotary friction welding of comparable (16MnCr5) and different (HSS M2 and EN8 Steel) metals. Weld joints between combination metals that are comparable and different are examined for joint strength, hardness, tensile strength, and microstructure. Under the tensile test, joint strength was also assessed. Furthermore, the tensile strengths of the comparable and

$\textbf{SPRINGERNATURE}\ Link$

Log in

∃ Menu

Q Search

Cart

Home Journal of The Institution of Engineers (India): Series D Article

Optimization of Processing Parameters and Wear Performance of B₄C Reinforced AA6061 Composites Through Taguchi Methodology

ORIGINAL CONTRIBUTION Published: 29 July 2024

(2024) Cite this article

Journal of The Institution of Engineers (India): Series D

Aims and scope

Submit manuscript

C. Manjunatha, K. R. Varun, K. C. Nagaraja 🖂, Piyush Kumar Soni 🖂, R. Suresh Kumar, Chandan Prasad, Prakash Kumar 🖂 & K. G. Nithesh

 \bigcirc 155 Accesses Explore all metrics →

Abstract

Two or more elements with different physical and chemical characteristics make up the composite material. The composite may be prepared using a variety of methods, but stir casting is a popular choice since it is easy to use and reasonably priced. In this investigation, stir casting was used to create AA6061–Boron Carbide (B₄C) composites. Composites with 10% weight percentage of B₄C were selected for wear analysis. The Taguchi technique was

$\textbf{SPRINGERNATURE}\ Link$

Login

 \equiv Menu

Q Search

Cart

Home > Recent Advances in Materials and Manufacturing > Conference paper

Characterization of Ti-31 Alloy Coated with WC-Co/Cr by HVOF Technique

| Conference paper | First Online: 16 July 2024

| pp 117–124 | Cite this conference paper

Recent Advances in Materials and

<u>Manufacturing</u>

(ISME 2023)

Sandeep Kumar K. Chavan ∑, G. R. Gurunagendra, B. R. Raju, G. Madhusudan Reddy & H. S. Siddesha

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:
 ISME International Conference on Advances in Mechanical Engineering

67 Accesses

Abstract

$\textbf{SPRINGERNATURE}\ Link$

Login

 \equiv Menu

Q Search

Cart

Home > Recent Advances in Materials and Manufacturing > Conference paper

Characterization of Ti-31 Alloy Coated with WC-Co/Cr by HVOF Technique

| Conference paper | First Online: 16 July 2024

| pp 117–124 | Cite this conference paper

Recent Advances in Materials and

<u>Manufacturing</u>

(ISME 2023)

Sandeep Kumar K. Chavan ∑, G. R. Gurunagendra, B. R. Raju, G. Madhusudan Reddy & H. S. Siddesha

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:
 ISME International Conference on Advances in Mechanical Engineering

67 Accesses

Abstract

Journal of Biophotonics / Volume 17, Issue 7 / e202400070

RESEARCH ARTICLE

Design and analysis of a fiber Bragg grating-based foot pressure assessment system

Preeta Sharan, Ghada A. Khouqeer, Basma A. El-Badry, Anup M. Upadhyaya 🔀

First published: 25 April 2024 https://doi.org/10.1002/jbio.202400070

Abstract

This research presents a comprehensive study focused on the design, implementation, and analysis of an innovative fiber Bragg grating (FBG) based foot pressure assessment system. FBG sensors strategically placed on the great toe, metatarsal 1, metatarsal 2, and heel provided distinct peak resonant wavelengths, strains, and pressures during experimental cycles. Participant 1 exhibited peak resonant wavelength of 1537.745 nm for great toe, 1537.792 nm for metatarsal 1, 1537.812 nm for metatarsal 2, and 1537.824 nm for heel. Participant 2 showcased distinct graphical representations with peak resonant wavelengths ranging from 1537.903 to 1537.917 nm. In a fracture patient condition, the FBG-based system monitored weight-bearing capacity, integrated with real-time X-ray imaging for dynamic insights of rehabilitation as distinct approach. The strains and pressures at each position exhibited notable variations along with the sensitivity of 1.31µε obtained across all positions, underscoring the FBG-based system's reliability in capturing subtle foot pressure.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

IEEE.org	IEEE Xplore	IEEE SA	IEEE Spectrum	More Sites		Donate Ca		Personal Sign In
≡			Browse 🗸	My Settings 🗸	Help 🗸	Access provided by: The Oxford College of Engineering	Sign Out	
Access pro The Oxford Engineerin	d College of	Sign Out						
	All		•				Q ADVANCED SEARCH	

Conferences > 2024 11th International Confe... ?

Integrating Photonics and Fiber Bragg Grating Sensors with Deep Reinforcement Learning for Advanced Robotic Systems

T Subaranjani ; R Jaideep ; C Manjula ; V Seema All Authors •••

Abstract

Document Sections

I. Introduction

II. Related Work

III. Proposed Work

IV. Results and Discussion

V. Conclusion

Authors

Figures

References

Keywords

Metrics

More Like This

Downl

PDF

Abstract:

This research introduces the Photonics-Enhanced Embedded Robotic Intelligence Model (PEERIM), an innovative approach that integrates fiber Bragg grating (FBG) sensors wit... **View more**

© 📂

Alerts

Manage Content Alerts Add to Citation Alerts

✓ Metadata Abstract:

IEEE.org	IEEE Xplore	IEEE SA	IEEE Spectrum	More Sites		Donate Ca		Personal Sign In
≡			Browse 🗸	My Settings 🗸	Help 🗸	Access provided by: The Oxford College of Engineering	Sign Out	
Access pro The Oxford Engineerin	d College of	Sign Out						
	All		•				Q ADVANCED SEARCH	

Conferences > 2024 11th International Confe... ?

Integrating Photonics and Fiber Bragg Grating Sensors with Deep Reinforcement Learning for Advanced Robotic Systems

T Subaranjani ; R Jaideep ; C Manjula ; V Seema All Authors •••

Abstract

Document Sections

I. Introduction

II. Related Work

III. Proposed Work

IV. Results and Discussion

V. Conclusion

Authors

Figures

References

Keywords

Metrics

More Like This

۲ مر

Downl

PDF

Abstract:

This research introduces the Photonics-Enhanced Embedded Robotic Intelligence Model (PEERIM), an innovative approach that integrates fiber Bragg grating (FBG) sensors wit... **View more**

© 📂

Alerts

Manage Content Alerts Add to Citation Alerts

✓ Metadata Abstract:

IEEE.org	IEEE Xplore	IEEE SA	IEEE Spectrum	More Sites		Donate Ca		Personal Sign In
≡			Browse 🗸	My Settings 🗸	Help 🗸	Access provided by: The Oxford College of Engineering	Sign Out	
Access pro The Oxford Engineerin	d College of	Sign Out						
	All		•				Q ADVANCED SEARCH	

Conferences > 2024 11th International Confe... ?

Integrating Photonics and Fiber Bragg Grating Sensors with Deep Reinforcement Learning for Advanced Robotic Systems

T Subaranjani ; R Jaideep ; C Manjula ; V Seema All Authors •••

Abstract

Document Sections

I. Introduction

II. Related Work

III. Proposed Work

IV. Results and Discussion

V. Conclusion

Authors

Figures

References

Keywords

Metrics

More Like This

۲ مر

Downl

PDF

Abstract:

This research introduces the Photonics-Enhanced Embedded Robotic Intelligence Model (PEERIM), an innovative approach that integrates fiber Bragg grating (FBG) sensors wit... **View more**

© 📂

Alerts

Manage Content Alerts Add to Citation Alerts

✓ Metadata Abstract:

IEEE.org	IEEE Xplore	IEEE SA	IEEE Spectrum	More Sites		Donate Ca		Personal Sign In
≡			Browse 🗸	My Settings 🗸	Help 🗸	Access provided by: The Oxford College of Engineering	Sign Out	
Access pro The Oxford Engineerin	d College of	Sign Out						
	All		•				Q ADVANCED SEARCH	

Conferences > 2024 11th International Confe... ?

Integrating Photonics and Fiber Bragg Grating Sensors with Deep Reinforcement Learning for Advanced Robotic Systems

T Subaranjani ; R Jaideep ; C Manjula ; V Seema All Authors •••

Abstract

Document Sections

I. Introduction

II. Related Work

III. Proposed Work

IV. Results and Discussion

V. Conclusion

Authors

Figures

References

Keywords

Metrics

More Like This

۲ مر

Downl

PDF

Abstract:

This research introduces the Photonics-Enhanced Embedded Robotic Intelligence Model (PEERIM), an innovative approach that integrates fiber Bragg grating (FBG) sensors wit... **View more**

© 📂

Alerts

Manage Content Alerts Add to Citation Alerts

✓ Metadata Abstract:

Enhancing E-commerce Fashion Sales through Personalized Recommendation Systems | IEEE Conference Publication | IEEE X... 06/12/2024, 12:29 IEEE Xplore IEEE SA **IEEE Spectrum** More Sites Donate Cart Create Account Personal Sign In IEEE.org --Access provided by: Sign Out Help 🗸 Browse V My Settings ✓ The Oxford College of Engineering Access provided by: Sign Out The Oxford College of Engineering All Q ADVANCED SEARCH

Conferences > 2024 11th International Confe... ?

Enhancing E-commerce Fashion Sales through Personalized Recommendation Systems

Publisher: IEEE Cite This DDF

T Subaranjani ; Sathiyapriya Kannaiyan ; S Parvathy ; P R Shwetha All Authors •••

193 Full Text Views

Manage Content Alerts Add to Citation Alerts

Abstract

Document Sections

I. Introduction

II. Related Work

III. Dataset Description and Analysis Report

IV. Recommendation Models

V. Proposed Recommendation Model

Show Full Outline -

- Authors
- Figures

References

Keywords

Metrics

PDF

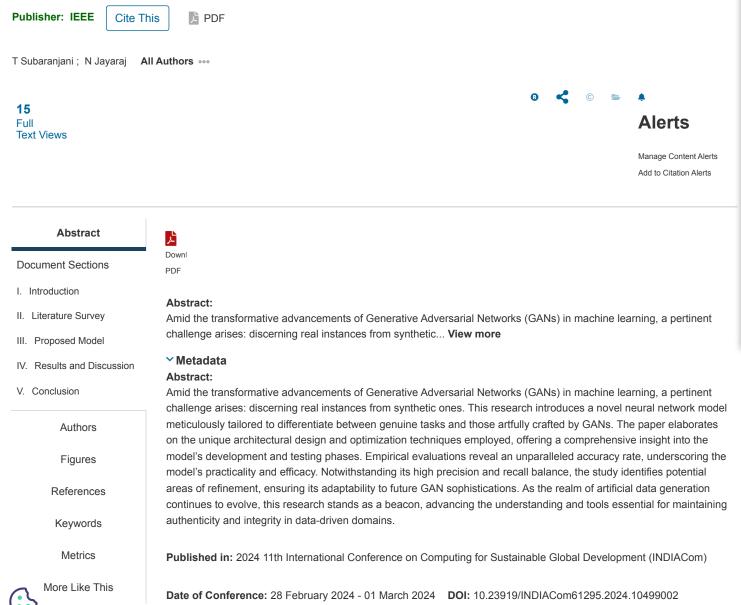
Abstract:

Downl

Personalized recommendation systems are pivotal in the thriving e-commerce fashion sector, enriching customer experiences and driving sales. This paper introduces an inno... **View more**

✓ Metadata

Abstract:


Personalized recommendation systems are pivotal in the thriving e-commerce fashion sector, enriching customer experiences and driving sales. This paper introduces an innovative method to enhance e-commerce fashion sales through personalized recommendations. The model merges Singular Value Decomposition (SVD) Reranking with customer grouping, yielding tailored product suggestions for distinct customer segments. The study comprehensively explores multiple recommendation techniques, assessing their performance using Mean Average Precision (MAP) scores. Results demonstrate the superiority of the proposed model, achieving a validation score of 0.032007. This success is attributed to the model's ability to capture latent features and offer personalized suggestions based on customer group traits. This research underscores the significance of personalized recommendations in boosting ecommerce fashion sales. The proposed approach, SVD Reranking with customer grouping, excels in providing personalized suggestions across diverse customer segments. These findings contribute to the advancement of recommendation systems in fashion, fostering customer satisfaction, minimizing returns, and bolstering sustainability.

Published in: 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom)

Advanced Neural Network Approaches for Distinguishing Real from Synthetic in GAN-generated Data Authenticity Challenges | 1... 06/12/2024, 12:29 IEEE Xplore IEEE Spectrum More Sites Donate Cart Personal Sign In IEEE.org IEEE SA Create Account . -Access provided by: Sign Out Browse V My Settings 🗸 Help 🗸 The Oxford College of Engineering Access provided by: Sign Out The Oxford College of Engineering All Q ADVANCED SEARCH

Conferences > 2024 11th International Confe... ?

Advanced Neural Network Approaches for Distinguishing Real from Synthetic in GAN-generated Data Authenticity Challenges

A Hybrid Deep Learning Approach for Accurate and Transparent Maize Plant Disease Classification | IEEE Conference Publicatio... 06/12/2024, 12:30 IEEE SA **IEEE Spectrum** More Sites Donate Cart Personal Sign In IEEE.org IEEE Xplore Create Account . -Access provided by: Sign Out Browse V My Settings 🗸 Help 🗸 The Oxford College of Engineering Access provided by: Sign Out The Oxford College of Engineering All Q ADVANCED SEARCH

Conferences > 2024 11th International Confe...

A Hybrid Deep Learning Approach for Accurate and Transparent Maize Plant **Disease Classification**

Publisher: IEEE **Cite This**

🏓 PDF

P. Bindhu Madhavi; T Subaranjani; Sumith Sigtia; Vidhan Mehta All Authors •••

1 Cites in Paper

55 Full **Text Views**

Abstract

Document Sections

I. Introduction

II. Related Work

III. Dataset Description

IV. Results and Model Evaluation

V. Discussions

Show Full Outline -

Authors

Figures

References

Citations

Keywords

广 Downl PDF

Abstract:

Within the domain of agricultural progress, accurately identifying instances of plant diseases emerges as a pivotal hurdle. We introduce a fresh approach to classify dise ... View more

C

Alerts

Manage Content Alerts Add to Citation Alerts

Metadata Abstract:

Within the domain of agricultural progress, accurately identifying instances of plant diseases emerges as a pivotal hurdle. We introduce a fresh approach to classify diseases in maize plant leaves by combining a hybrid model that merges Convolutional Neural Networks (CNNs) for visual recognition with Multi-Layer Perceptrons (MLPs) for transparency. This amalgamation aims to bridge the gap between precision and comprehensibility. Our study begins by scrutinizing the constraints of prevailing CNN and MLP-based models in the context of disease classification. Subsequently, we present our hybrid architecture, elucidating its benefits and addressing inherent challenges. Through rigorous experimentation, we showcase the model's remarkable performance, achieving training, validation, and test accuracies of 98.98%, 96.19%, and 95.76%, respectively. The significance of our proposed model lies in its potential to transform disease management in agriculture. The fusion of accuracy and interpretability not only equips farmers with actionable insights but also establishes a model for ethical and transparent AI implementation. This research propels the field forward by providing an inventive hybrid solution that excels not only in accuracy but also harmonizes with practical agricultural scenarios, thus paving the path for a more sustainable and enlightened future.

https://doi.org/10.33472/AFJBS.6.5.2024.183-194

African Journal of Biological Sciences

Homology Modeling and DockingInvestigations of Polyglutamine (PolyQ)

and Non-PolyQ Peptides for the Treatment of Huntingtin's Disease.

Indulekha John¹, R.Remya²,Salma Kausar M³, Ram Kumar Chenthur Pandian⁴,K.Valarmathy^{5*}

 Assistant Professor, Department of Biotechnology, The Oxford College of Engineering, Bangalore, indulekhajohn@gmail.com.
 Associate Professor, Department of Electronics and Communication

- Engineering, VeltechRangarajDrSagunthala R & D Institute of Science & Technology, Chennai, remiamernath@gmail.com
- 3. Assistant Professor, Department of Biotechnology, The Oxford College of Engineering, Bangalore, msalmakausar@gmail.com.
- 4. Professor, Department of Electronics and Communication Engineering, Shri Krishna College of Technology, Coimbatore, India, profcramkumar@gmail.com
 - 5. Associate Professor, Department of Biotechnology, The Oxford College of

Engineering, Bangalore, dr.valarmathyk@gmail.com

*Corresponding author: Associate Professor,

Department of Biotechnology,

The Oxford College of Engineering, Bangalore,

dr.valarmathyk@gmail.com

Phone no: 9739672705

ABSTRACT

The first exon of the HTT (Huntingtin) gene has an aberrant increase of CAG repeats, which causes Huntingtin's disease, a neurological illness disease called Huntingtin. This genetic anomaly leads to creation of an aberrant protein of Huntingtin protein called as (Htt) which has extended poly-glutamine sequences of varying lengths, which aggregate and become toxic to the brain, causing significant damage. Although the exact role of the HTT gene is unknown, it is known to be essential for the prenatal development of neurons in the brain. While thorough reversal for the damage of brain is currently beyond our capabilities, there is promising research engrossed treatments based on peptide for Huntingtin, including both polyglutamine and non-polyQ peptides such as QBP1, P42, ED11, and BIP.By focusing on different areas of the Htt protein, these peptides—QBP1 and P42 in particular—avoid aggregation. P42 ties to residues between 480 and 502, while QBP1 interacts with several locations within the Htt protein's N-terminal section.

Article History Volume 6, Issue 5, Apr 2024 Received: 01 Apr 2024 Accepted: 08 Apr 2024 doi: 10.33472/AFJBS.6.5.2024.183-194

Valarmathy K / Afr.J.Bio.Sc. 6(5) (2024). 9525-9533 ISSN: 2663-2187

https://doi.org/10.48047/AFJBS.6.5.2024.9525-9533

AfricanJournalofBiological

Sciences

AN EFFICIENT HYBRID FILTERING APPROACH TO IMPROVE THE

QUALITY OF MEDICAL IMAGES

Valarmathy K¹, O. Jeba Singh², R. Remya^{3*}, P. Jose⁴, G. Dhivyasri⁵, M. Manikandan⁶

¹ The Oxford College of Engineering, Bangalore, ²Alliance University, Bengaluru

^{3,4}Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Avadi, Chennai

⁵Sai Vidya Institute of Technology,Bengaluru

⁶Presidency University, Bengaluru

*E-mail: remiamernath@gmail.com

Abstract:

Article History Volume 6, Issue 5, 2024 Received: 22 May 2024 Accepted: 03 Jun 2024 doi:10.48047/AFJBS.6.5.2024. 9525-9533 Noises in the image results from the scanned image have a serious impact on the final decision made by the Expert. Globally, huge millions of decision made based on the scanned results. This paper focuses on the noise replacement aspect by an image filtering algorithm to perform noise removal automatically. The application has developed based on the fusion of both median and modified Discrete Wavelet Transform (mDWT) filtering algorithm and it is tested on variegated dataset images. Such a de-noised image performance has been analysed by the various performance measures such as Peak Signal to Noise Ratio (PSNR), Normalized Absolute Error (NAE), Structural Context (SC), Normalized Absolute Error (NAE), Structural Similarity Index Measure (SSIM), Normalized Cross correlation (NK) and Maximum Difference (MD). The fused filtering algorithm plays a key role in image processing, since it acts as a pre-processing step.

Keywords: Median Filter, modified DWT filter, MRI images, Rician noise

1. Introduction:

The World Health Organization reported that several millions of people got infected with variegated health issues. In order to identify such issues; initial scanning plays a key role. Such scanning has been performed by MRI, CT, X-ray and fMRI scanning. After scanning, noise replacement plays a crucial role. Since, image has been captured with noise during the image acquisition time. Such noise has to be replaced by an efficient noise replacement algorithm. In the previous literature by Guhathakurta, wavelet gains a greater performance. It utilizes the multi resolution analysis. By using wavelets and wavelet packets, a comparison was made with variegated approaches. Furthermore, a hybrid model by Benabdelkader and Soltani has been utilized in image denoising technique. It estimates the standard deviation for the entire image. It is then utilized for the threshold calculation in the wavelet coefficient shrinkage. Lahmiri and Boukadoum proposed that for filtering first order local statistics (FOLS) and the fourth order PDE were combined. Its performance was evaluated on the images in the presence of Gaussian, salt and pepper, poisson and speckle noise. Rekha and Samundiswary introduced a method called Double density wavelet transform. It is nothing but the combination of the Fast Bilateral Filter (FBF) with double density wavelets. It reduces the noise present in the image which acquires during the image acquisition and it degrades the noise at any levels. Remya et al. proposed a novel thresholding approach utilized in the discrete wavelet transform filtering to denoise the image. It yields better accuracy than the other similar works. To measure the filtering performance, PSNR and SSIM were utilized. Igor proposed in his work that for filtering, fusion of a centre- weighted median filter and block matching 3D filtering technique have been utilized. It removes both impulsive and Gaussian noise.

$\textbf{SPRINGERNATURE}\ Link$

Login

∃ Menu

Q Search

Cart

Home Journal of Materials Science: Materials in Electronics Article

Spectroscopic and non-spectroscopic analysis of Fe-substituted BaSO₄ nanoparticles by chemical precipitation method

Published: 01 July 2024

Volume 35, article number 1288, (2024) Cite this article

Journal of Materials Science: Materials in Electronics

Aims and scope

Submit manuscript

P. Soundhirarajan , M. Silambarasan , L. Guganathan, Sandhanasamy Devanesan, Mohamad S. AlSalhi, Ayyar Dinesh, Madhappan Santhamoorthy & Manikandan Ayyar

 \bigcirc 114 Accesses Explore all metrics →

Abstract

Nanomaterials are of tremendous interest because of their numerous uses. The preparation technique and impurity added to nanomaterials have a significant impact on their structure and effectiveness. Hence, we have examined the optical properties of BaSO₄ nanoparticles doped with Fe-ions. The effect of Fe-ions concentration on the spectroscopic and non-spectroscopic techniques of BaSO₄, were investigated thermogravimetric differential

Home

Subject > Journals Books Major Reference Works Resources For Partners > Open Access

About Us> Help>

K. Ramesh, S. Gunavarthini, P. Soundhirarajan, M. Silambarasan, and B. Mehala

Doi: https://doi.org/10.1142/S0219581X23500850

< Previous

Next >

Abstract

In this work, $Mn_2P_2O_7$ nanoparticles were synthesized via hydrothermal route without any templates or surfactants followed by heat treatment at 700 °C. The as-prepared samples were characterized and described using thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Scanning electron microscopy (SEM) analysis. The resultant product was evaluated for electrochemical properties in organic electrolyte between -1.4 and 1.6 V using cyclic voltammetry in ambient condition. It revealed the specific capacitance of 565 F/g at scan rate of 5 mV/s. The outstanding pseudocapacitive performance was absorbed due to the faradaic oxidation and reduction reactions related to the intercalation/de-intercalation of the tetrabutylammonium cation (TBA⁺) electrolyte and inorganic pyrophosphate lattice. It was believed that the cost effective $Mn_2P_2O_7$ nanoparticles may be promising electrode materials for electrochemical capacitors.

Keywords: Mn₂P₂O₇ • hydrothermal • calcination • electrochemical performance • pseudocapacitance

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Personal login

Home

Subject > Journals Books Major Reference Works Resources For Partners > Open Access

About Us> Help>

S. Manimegalai, P. Soundhirarajan, and M. Silambarasan

Doi: https://doi.org/10.1142/S1793292024501583

< Previous

Next >

Abstract

CuCo₂O₄ nanoparticles were synthesized via facile hydrothermal route using oxalic as a precipitant, thermal decomposition of CuCo₂O₄ precursor at 400°C. The structural studies from X-ray diffraction (XRD), Fourier transform infrared spectrometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) disclose the predominant spinel crystal phase for copper cobaltite. The optical absorption spectra reveal two band gaps of 3.8 eV and 4.4 eV in the CuCo₂O₄ nanoparticles. The cyclic voltammetry (CV) was used to assess the electrochemical characteristics of the resulting product in an organic electrolyte at -1.5-1.5 V under ambient conditions. On 22.4 nm CuCo₂O₄ nanoparticles, a greater capacitance of 920 F/g at a scan rate of 5 mV/s was achieved.

Keywords: Spinel CuCo₂O₄ - cyclic voltammetry - band gap - specific capacitance - impedance

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Personal login Institutional Login Register for access

$\textbf{SPRINGERNATURE}\ Link$

Login

∃ Menu

Q Search

🕂 Cart

Home Journal of Optics Article

Detection of intraerythrocytic stages of malaria parasite using one-dimensional Bragg mirror optical sensor

Research Article Published: 27 February 2024

(2024) Cite this article

Journal of Optics

Aims and scope

Submit manuscript

Ranjith B. Gowda 🔀, H. N. Gayathri, Regina Mathias, H. C. Shreya, P. N. Veena & R. K. Raju

 \bigcirc 148 Accesses \bigcirc 3 Citations Explore all metrics →

Abstract

This research focuses on the construction and analysis of a one-dimensional (1D) Bragg mirror (BM) with a micro-cavity at the centre to identify the *Plasmodium falciparum* parasite, which is the primary cause of malaria. In biomedical applications, early malaria identification is essential. Humans are bitten by female Anopheles mosquitoes, which release the pathogen *Plasmodium falciparum* into the body. Initially invading RBCs, this parasite grows and reproduces inside human red blood cells. *P. falciparum* goes through a number of erythrocytic phases in the infected RBC cells. Using the appropriate diagnostic

ScienceDirect

Advances in Functionalized Polymer Nanocomposites

From Synthesis to Applications

Woodhead Publishing Series in Composites Science and Engineering

2024, Pages 959-1000

24 - Functionalized conducting polymer nanocomposites for EMI shielding applications

C.K. Madhusudhan ¹, Muhammad Faisal ², N. Maruthi ^{2 3}, Narasimha Raghavendra ⁴, K. Mahendra ⁵, C.H. Abdul Kadar ^{2 6}

Show more 🗸

i≡ Outline 🛛 😪 Share 🗦 Cite

https://doi.org/10.1016/B978-0-443-18860-2.00024-4 ㅋ Get rights and content ㅋ

Abstract

Conducting polymers have gained the greatest interest over the last few decades for their diverse application capacities. Conducting polymer-based nanocomposites are capable of achieving new functionalities for various technologically relevant areas of composite material research. Important and modified functionalities like tunable electrical conductivity, environmental stability, thermal stability, and thermoelectric capabilities, with low cost associated with conducting polymer-based composites make this class of materials in the frontier of materials for advanced applications. Some of the most specific contributed areas of functionalized conducting polymer composites are electromagnetic shielding, conducting adhesives, artificial nerves, electrostatic materials, diodes, transistors, and aircraft structures. This chapter highlights the importance of conducting polymers and functionalized conducting polymer-based composites with their selected applications.

ScienceDirect[®]

Journal of Molecular Structure

Volume 1305, 5 June 2024, 137701

Synthesis, characterization, and photoluminescence investigations of Al/Co-doped ZnO nanopowder

Usha Jinendra ^a, Dinesh Bilehal ^b 은 쩓, B.M. Nagabhushana ^c, Avvaru Praveen Kumar ^d 은 쩓, Mohd Afzal ^e, Chandan Shivamallu ^f, Sanjay S Majani ^g, Shiva Prasad Kollur ^g 은 쩓

Show more 🗸

😪 Share 🍠 Cite

https://doi.org/10.1016/j.molstruc.2024.137701 ㅋ Get rights and content ㅋ

Highlights

- Co/Al-doped <u>ZnO nanoparticles</u> were synthesized through solution combustion method.
- The structural analysis revealed a hexagonal <u>wurtzite</u> structure of the materials.
- <u>Electromagnetic interference</u> (EMI) shielding effect of synthesized material was investigated.

Abstract

06/12/2024,	12:51
-------------	-------

Science that inspires

A Cell Press journal

Log in

Q

Search for...

RESEARCH ARTICLE · Volume 10, Issue 14, e34427, July 30, 2024

Open Access

Investigations of adsorption and photoluminescence properties of encapsulated AI–ZnO nanostructures: Synthesis, morphology and dye degradation studies

Usha Jinendra ^a · Sanjay S. Majani ^b · Dinesh Bilehal 은 ^c 쯔· … · Muzaffar Iqbal ^f · Chandan Shivamallu ^g · Shiva Prasad Kollur 은 ^b 쯔… Show more

Affiliations & Notes ✓ Article Info ✓

Highlights

- Synthesis of Al-doped ZnO nanoparticles by solution combustion method.
- Narrowed size distribution, a controllable shape, and good crystal quality.
- Al-doped ZnO nanoparticles' UV emission peak location showed greater intensity.

Download PDF Outline Share More

Abstract

This study focuses on the solution combustion approach to examine the nanostructures of undoped and doped ZnO with different concentrations of AI (0.1 % and 0.2 %). Various physical techniques were utilized to characterize the synthesized nanoparticles. X-ray diffraction (XRD) revealed the crystalline materials, while scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) findings confirmed the products with particle size and the insertion of AI into the ZnO lattice. Fouriertransform infrared spectra (FTIR) confirmed the presence of different functional groups in the obtained material. The results indicate that Al-doped ZnO (Al-ZnO) nanoparticles show promising properties for optoelectronics and photoluminescence. Photoluminescence analysis indicated that an increase in AI3+ (0.2 %) concentration resulted in a decrease in peak intensity and an increase in the full width at half maximum. The band gap was calculated using the Taucs plot. The study also highlights the effectiveness of Zn1-xAlxO nanostructures in degrading organic pollutants, particularly in adsorbing Malachite Green (MG) dye. Among the samples, the 0.2 % Al-doped ZnO exhibited superior dye degradation efficiency due to its enhanced adsorption capacity and smaller particle size, as evidenced by multilayer adsorption capacity and chemisorption during the degradation process. This study provides valuable insights into the potential applications of Aldoped ZnO nanoparticles in various environmental and technological fields, emphasizing their significance in the degradation of organic pollutants.

Keywords

Zn_{1-x}Al_xO nanostructures · Dye degradation · Photoluminescence studies · Solution combustion method

1 Introduction

Due to its high potential utility in optoelectronics and widespread scientific interest, ZnO has become one of the most heavily investigated metal oxides in recent years. Applications in optoelectronics, nonlinear optics, and electro-optics [1] greatly benefit from the material's high exciton binding energy of 60 meV at room temperature and wide direct band gap of 3.3 eV [2]. Al, a member of group III, easily converts n-type ZnO to p-type ZnO. As an added advantage, ZnO may be used in a number of different. Furthermore, ZnO can be used in various applications, such as gas sensors [3], solar cells [4], and flat panel displays [5]. An obvious advantage of ZnO is that its characteristics can be easily adjusted by manipulating the number of oxygen vacancies within the material. It has been discovered that growth temperature and environment significantly affect ZnO's photoluminescence (PL) characteristics [6]. Stoichiometric ZnO thin films tend to exhibit intense UV fluorescence. Defects such as oxygen interstitials, oxygen vacancies, zinc interstitials, zinc

Download PDF

$\textbf{SPRINGERNATURE}\ Link$

Log in

🖸 Cart

∃ Menu

Q Search

Home Food Analytical Methods Article

Multiresidue Pesticide Analysis in Onion Using GC-MS/MS Using Modified QuEChERS Method with Zirconium Oxide Nanoparticle

Research Published: 04 March 2024

Volume 17, pages 701–711, (2024) Cite this article

Food Analytical Methods

Aims and scope

Submit manuscript

<u>G. T. Deepa, Usha Jinendra, P. T. Goroji, M. C. Khetagoudar, Mahadev B. Chetti & Dinesh C.</u> <u>Bilehal</u>

 \bigcirc 167 Accesses ↔ 1 Altmetric Explore all metrics \rightarrow

Abstract

In this research, a straightforward sample treatment for multiresidue pesticide evaluation of onion samples was developed using the solid-phase extraction/quick, easy, cheap, effective, rugged, and secure (SPE/QuEChERS) method. The suggested technique is based on acetonitrile liquid-liquid partitioning, then follows dispersive solid-phase extraction with ZrO₂ particles for extract purification. ZrO₂ is synthesized via co precipitation and analyzed via XRD, FTIR, and SEM. ZrO₂ has been demonstrated to be more effective than normal

ScienceDirect[®]

Current Research in Green and Sustainable Chemistry Volume 8, 2024, 100399

Evaluation of antioxidant and antibacterial activities of silver nanoparticles derived from *Limonia acidissima* L. fruit extract

Azharuddin B. Daphedar ^a 은 쯔, Sanjay S. Majani ^b, Praveenkumar J. Kaddipudi ^c, Raveendra B. Hujaratti ^d, Siddappa B. Kakkalmeli ^e, Ali A. Shati ^f, Mohammad Y. Alfaifi ^f, Serag Eldin I. Elbehairi ^f, Chandan Shivamallu ^g, Usha Jinendra ^h, Shiva Prasad Kollur ^b 은 쯔

Show more 🗸

i≡ Outline 🛛 😪 Share 🗦 Cite

https://doi.org/10.1016/j.crgsc.2024.100399 オ Get rights and content オ

Under a Creative Commons license 🛪

open access

Highlights

- AgNPs was synthesized through green chemistry synthetic approach.
- The PXRD, SEM and TEM tools were used to characterize the sample.
- Antioxidant and antimicrobial activities were investigated.
- As-Prepared AgNPs exhibited significant biological potential against tested pathogens.

SPRINGER NATURE Link

Log in

∃ Menu

Q Search

Cart

Home > Proceedings of the International Conference on Eco-friendly Fibers and Polymeric Materials

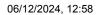
> Conference paper

Comprehensive Review on Eco-Friendly Fillers 2012–2023: A Potential Resource for Polymer Composites

| Conference paper | First Online: 27 November 2024

| pp 423–462 | <u>Cite this conference paper</u>

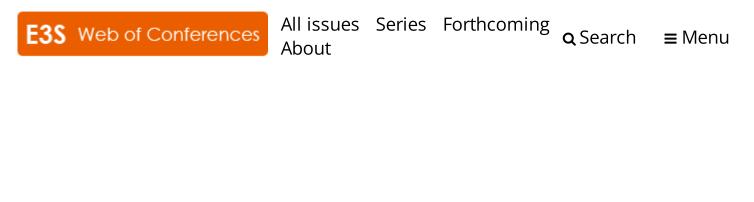
<u>Proceedings of the International</u> <u>Conference on Eco-friendly Fibers</u> <u>and Polymeric Materials</u>


(EFPM 2024)

Edayadulla Naushad 🖂, Shanmuga Sundari Chandraraj, Indran Suyambulingam & Divya Divakaran

Part of the book series: <u>Springer Proceedings in Materials</u> ((SPM,volume 60))

Included in the following conference series: <u>International Conference on Eco-friendly Fibers and Polymeric Materials</u>


By using this website, you agree that EDP Sciences may store web audience measurement cookies

and, on some pages, cookies from social networks. More information and setup eccos sciences Journals

Books Conferences

Web of EDPS Account © conferences

ΟK

All issues > Volume 559 (2024) > E3S Web of Conf., 559 (2024) 04003 > Abstract

Open Access

Article Number04003Number of page(s)9SectionStructural Engineering & Concrete TechnologyDOIhttps://doi.org/10.1051/e3sconf/202455904003Published online08 August 2024	lssue	E3S Web of Conf. Volume 559, 2024 2024 International Conference on Sustainable Technologies in Civil and Environmental Engineering (ICSTCE 2024)	A
9 of page(s) Section Structural Engineering & Concrete Technology DOI https://doi.org/10.1051/e3sconf/202455904003 Published 08 August 2024		04003	
DOI https://doi.org/10.1051/e3sconf/202455904003 Published 08 August 2024		9	
Published 08 August 2024	Section	Structural Engineering & Concrete Technology	
08 August 2024	DOI	https://doi.org/10.1051/e3sconf/202455904003	
		08 August 2024	

E3S Web of Conferences 559, 04003 (2024)

Rice Husk Ash based Sodium Silicate as the Alkali Activator in slag based Geopolymer Concrete

A. Chithambar Ganesh^{1*}, Hemadri Prasad Raju², Leema Margret³ and Usha Jinendra⁴

¹ Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai, India

Table of Contents

Article contents

PDF (1.314 MB) Abstract References

Database links

NASA ADS Abstract Service

Metrics

Show article metrics

Services

Same authors

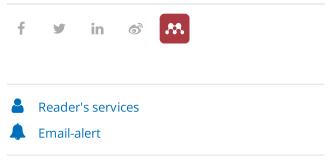
- Google Scholar
- EDP Sciences database

Recommend this article Download citation Alert me if this article is corrected Alert me if this article is cited

Related Articles

By using this website, you agree that EDP Sciences may store web audience measurement cookies

OK


Concrete ³ Ramco Institute of Technology, Rajapalayam, India

⁴ The Oxford College of Engineering, Bengaluru, India

Abstract

Geopolymer binders have become a cutting-edge, environmentally friendly substance with the potential to replace Portland cement in a variety of applications and potentially cut the carbon footprint of concrete production by up to 80%. Precursors and alkali activator solution are the essential part of geopolymer. Precursor material can be industrial wastes and Ground Granulated Blast Furnace Slag is used in this investigation. However, the requirement of synthetic alkali activator solutions has to be addressed to fully realize the sustainability benefits of geopolymer concrete. In this aspect, an effort has been taken to synthesis sodium silicate solution from the processed rice husk ash using hydrothermal process and utilize the same for the production of geopolymer concrete. The different parameters that influence the properties of synthesized sodium silicate solution such as ratio of sodium hydroxide to rice husk ash, temperature maintained in the hydrothermal process and duration of hydrothermal process was varied and investigated in this study. The ratio of sodium hydroxide to rice husk ash was varied in different proportions such as 1:0.5, 1:1, 1:1.5, 1:2. Temperature was varied as 80, 100, 120 degree Celsius and reaction time was varied as 60, 90, 120, 150 minutes. The geopolymer concrete was tested for setting time, compressive split tensile strength strength, and water absorption capacity. The strategy is thought to have a good chance of significantly lowering the global warming potential of geopolymers. Findings of this study unleash hefty potential in the arena of

E3S Web of Conferences 529, 01004 (2024) Improving the Mechanical Properties of High-Performance Concrete using Alccofine and Glass Powder E3S Web of Conferences 529, 01040 (2024) Experimental Study on the Behavior of One Part Geopolymer Concrete Using Natural Binders and **Activators** E3S Web of Conferences 529, 01043 (2024) More Bookmarking

Annals of Pure and Applied Mathematics Vol. 29, No. 1, 2024, 41-50 ISSN: 2279-087X (P), 2279-0888(online) Published on 13 February 2024 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v29n1a05930

Annals of **Pure and Applied** Mathematics

The Status Gourava Indices of Middle Graphs of Some Standard Graphs

Selastina Mary^{1*} and Mallikarjun B Kattimani²

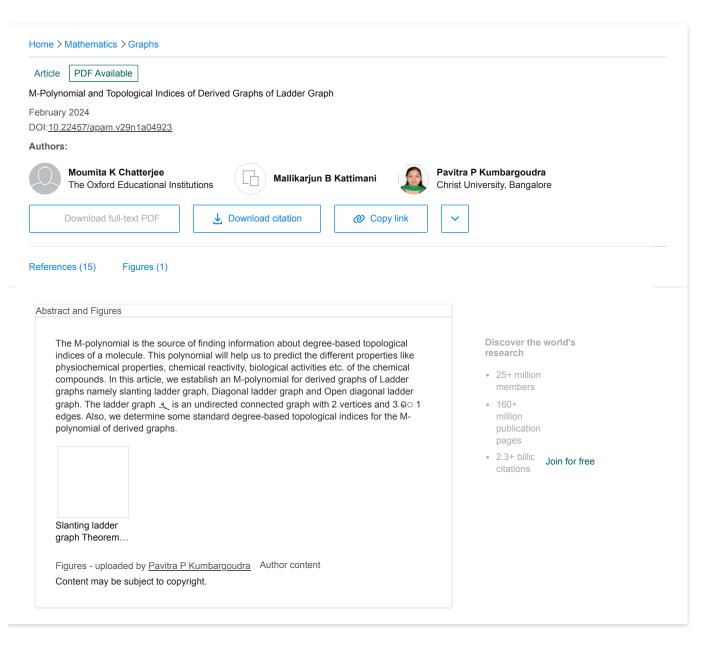
^{1,2} The Oxford College of Engineering, Bangalore-560068, India ^{1*}Corresponding Author: mallikarjunbk64@gmail.com

Received 2 January 2024; accepted 10 February 2024

Abstract. The sum of the shortest distance between a vertex u from all other vertices of a graph G is called the status of the vertex u and is denoted by $\sigma(u)$. In this article, we have found the precise formula for the derived graphs of a few standard graphs. We have obtained Status Gourava indices of middle graphs of some standard graphs namely cycle graph, star graph, complete graph, wheel graph and friendship graph. We have calculated ten standard status indices of middle graphs of standard graphs using this new index.

Keywords: Graphs, Gourava index, Degree-based topological index.

AMS Mathematics Subject Classification (2010): 05C31


1. Introduction

Every graph that is taken into consideration here is finite, nontrivial, undirected, free of loops and multiple edges, and without isolated vertices. For words or notations that are not defined in this work, found in Harary [1]. Vertex set is denoted by V(G), edge set is denoted by E(G) for a graph G. The middle graph M(G) is represented by the graph G, from which a new vertex is inserted into each edge of G, and edges are drawn between these new vertices which lie on adjacent edges of G. The length of the shortest path between two vertices u and v, denoted by d(u, v) is the distance between them. The sum of distances of a vertex u from all other vertices of a graph is called the status of the vertex u with notation $\sigma(u)$. Kulli introduced some new status indices of the graph. The (a, b) – status index, as

$$S_{a,b} = \sum_{uv \in E(G)} \{ (\sigma(u))^a \cdot (\sigma(v))^b + (\sigma(u))^b \cdot (\sigma(v))^a \}$$

Kulli introduced status Gourava indices of the graph. For notations and definitions, we refer [1, 5] and [6]. Kulli et al. have found the first status index $S_1(G)$, second status index $S_2(G)$, product connectivity status index PS(G), reciprocal product connectivity status index RPS(G), the general second status index $SGO_1(G)$, the first status Gourava index $SGO_2(G)$, of middle graphs of some standard graphs namely cycle graph, star graph, complete graph, wheel graph and friendship graph.

Recruit researchers Join for free Login

Sponsored videos

• Public Full-text (1)

Home

Subject> Journals Books Major Reference Works Resources For Partners> Open Access About Us> Help>

Doi: https://doi.org/10.1142/S0217984924500982

< Previous

Next >

Abstract

The combined heat and mass transfer, the so-called thermosolutal convective problem, has become an attractive field of research in many diversified areas. In this paper, for the first time, oscillatory flow analysis has been carried out for triple diffusive viscoelastic fluid flow in a porous medium. A comprehensive model is developed for the modified Darcy-Brinkman-Oldroyd-B fluid, porous medium, Boussinesq approximation, heat and mass transfer across a finite temperature and concentration difference in the chemical potential of two salts. Triple diffusive viscoelastic fluid flows through porous media have grown significantly as this situation occurs in more than a few applications such as improved oil recovery filtration, liquid complex molding, solidification of liquid crystals, cooling of metallic plate in a bath, exotic lubricants and colloidal solutions, polymer processing, chemical and bioengineering industries, among others. The governing coupled nonlinear partial differential equations with boundary constraints represent the modeled flow problem. In addition, these equations are converted into non-dimensional form by employing suitable non-dimensionalizing quantities. The impacts of the pertinent parameters and related dimensionless numbers on the dimensionless velocity, temperature, concentrations, shear stress, heat and mass transfer are examined for both suction and injection cases. It has been found that when the injection level on the heated plate is increased, the shear rate increases for each channel plate. Furthermore, we recognized that the viscoelastic parameters exhibit an opposite kind of behavior on the velocity, temperature, and concentrations fields.

Research Article | Open Access | 🕁 Download PDF

Volume 70 | Issue 5 | Year 2024 | Article Id. IJMTT-V70I5P102 | DOI : https://doi.org/10.14445/22315373/IJMTT-V70I5P102

The Accurate Degree Domination Number of a Graph

Moumita K. Chatterjee, Mallikarjun B. Kattimani, Pavitra P. Kumbargoudra

Received	Revised	Accepted	Published
20 Mar 2024	25 Apr 2024	13 May 2024	26 May 2024

Abstract

Consider a graph G(V, E) and a dominating set Dk, the degree of a dominating set Dk is the sum of the degree of all the vertices in Dk and is written as deg(Dk). The degree of the set is the sum of the degrees of all the vertices of the set. The minimum degree among all the dominating sets is called the degree dominating set and is written as Di. Now, a dominating set Di is an accurate degree dominating set if V

Keywords

Citati

Home (https://internationalpubls.com/index.php/cana/index)

/ Archives (https://internationalpubls.com/index.php/cana/issue/archive)

/ Vol. 31 No. 1s (2024): Innovative Approaches in Nonlinear Analysis for Materials and Manufacturing (https://internationalpubls.com/index.php/cana/issue/view/56)

/ Articles

Simulation of Hemoglobin and Oxyhemoglobin Dynamics Using a Robust Computational Technique

PDF (https://internationalpubls.com/index.php/cana/article/view/579/454)

DOI: https://doi.org/10.52783/cana.v31.579 (https://doi.org/10.52783/cana.v31.579)

Keywords:

hemoglobin, oxyhemoglobin, SpO2, runge-Kutta method

R. Kasthuri, K. Mythili Gnanapriya, C. Gayathri, S. Girija, K. Kavithamani, R. Shanmugapriya, S. Ranganayaki, P. Vasanthi, N. Jeeva Prakash, L. Shruthika

Abstract

In this study a robust computational technique is used for a better understand of the dynamics of hemoglobin and oxyhemoglobin in human blood.[1] Results obtained using this technique helps to calculate SpO2 levels. The major goal of this research is to create a mathematical model that can explain how the concentrations of hemoglobin and oxyhemoglobin change over time. A graphical representation has been arrived with the solution of the proposed model using R-K method and MATLAB tool.

Issue

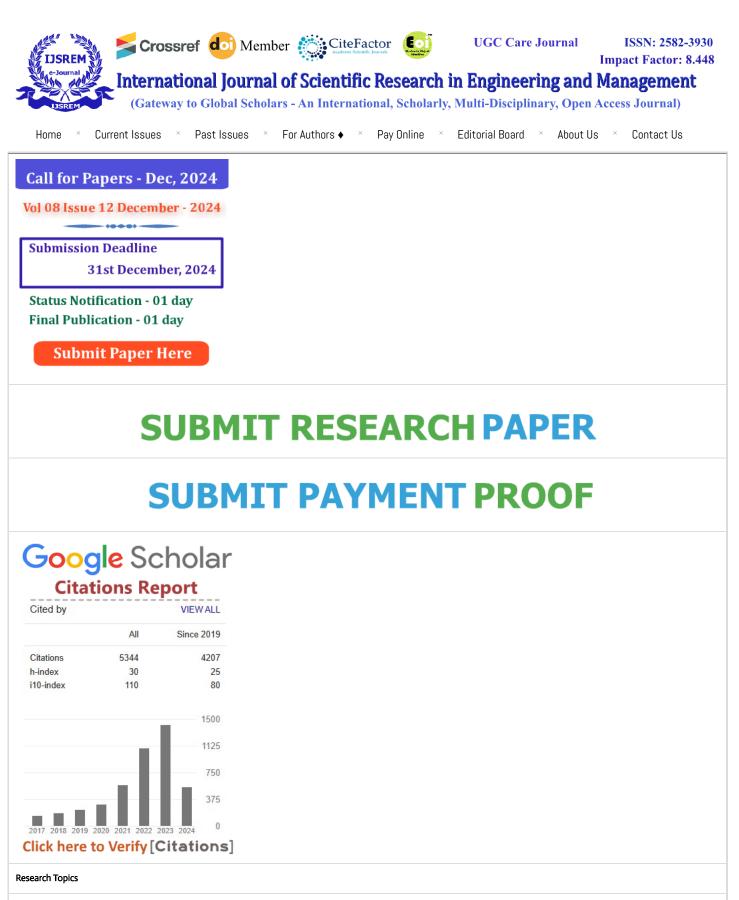
Vol. 31 No. 1s (2024): Innovative Approaches in Nonlinear Analysis for Materials and Manufacturing (https://internationalpubls.com/index.php/cana/issue/view/56)

Section

Articles

Announcements

Call for Papers


Call for Papers for the Upcoming Issue.

Last Date of Submission: January 01st, 2025

Call for Reviewers

Call for Editorial Member/ Reviewers Submitting your Application

If you would like to apply for the position of an Editorial Board Member on the journal, please contact the Editor including your CV and a brief covering letter detailing why you are a suitable candidate, to editor@internationalpubls.com (mailto:editor@internationalpubls.com). Your cover letter should be no longer than one page and should cover where you believe the research field is going (and the journal's place within it), as well as details of any previous relevant journal editorial and peer review management experience.

FAQ

Publication Ethics

Copyright Infragmentation

Download	28
File Size	(40578 KB)
File Count	()
Create Date	(17/07/2024)
Last Updated	(17/07/2024)
Download	

Description

BALANCING WORK & LIFE TO REDUCE DOCTORS STRESS

Dr.P.A. Satya Vardhini, Research Scholar, VTU Research Centre, Department of Management Studies, The Oxford College of Engineering, Bengaluru.

Dr.K. Tharaka Rami Reddy, Professor& Head, Department of Management Studies, The Oxford College of Engineering, Bengaluru.

ABSTRACT:

It can be exceedingly difficult for women doctors to maintain a healthy work-life- balance because they are more stressed compared to those in other professions. The number of female doctors is rapidly growing in corporate and government hospitals. Heavy job stress causes tension frequently, yet for the situation to turn out well, work-life- balance is essential and it intimately intertwined act of delicate balance between one's personal and professional trajectories. Their employment involves several challenges, including night shifts, extended shifts, shorter breaks, and intense work pressure. The research was conducted to shed light on the challenges faced by women doctors and to close a gap in our understanding of the work-life balance issues that these women face. Women doctors are more likely to work hard and provide excellent treatment when they are surrounded by a positive work and home culture. Therefore, it's important to examine ways to help female doctors to achieve a better work-life balance by identifying the numerous elements that stress out their lifestyles, in hospital setting. The research report is based on secondary data gathered from already published literature reviews, current research papers, surveys, websites, blogs, and articles. The methodology used in the study is conceptual and descriptive. According to the results, work-life harmony of women doctors is affected by both personal and professional sources of stress. In addition to highlighting several research gaps in the stress sector, the paper included numerous suggestions to aid in achieving a better work-life balance for women doctors.

Keywords: personal life, professional life, stress, women doctors, work-life-balance.

Studies on Seasonal Variation of Groundwater Quality in the Suddagedda Basin, Eastgodavari District, A.P.

Facile and Green synthesis of Novel Fluorescent CQD'S from Calotropis Gigantea (blue) Leaves for Photocatalytic Degradation of Dyes

	What is DOI
	Site Map
0	Frequently Asked Questions

What type of papers does International Journal of Scientific Research in Engineering and Management (IJSREM) publish?

https://ijsrem.com/download/balancing-work-life-to-reduce-doctors-stress/

06/12/2024, 15:30 A Comparative Study of BSE Listed Sectoral Indices of Real Estate and Banking Industry by Venkata Lakshmi Suneetha M	. ,
ProductSubmitQ&SubscribeaBrowseRankingsBlog >ContactImage: Contact(https://www.ssrn.com/)Servicespaper(https://papers.ssrn.com/)(https://papers.ssrn.com/)	m/sol3/S

📆 Download This Paper (Delivery.cfm/SSRN_ID4769976_code2519140.pdf?abstractid=4769976&mirid=1)

Open PDF in Browser (Delivery.cfm/SSRN_ID4769976_code2519140.pdf?abstractid=4769976&mirid=1&type=2)

Add Paper to My Library

Share:	F	y	\boxtimes	ଚ
--------	---	---	-------------	---

A Comparative Study of BSE Listed Sectoral Indices of Real Estate and Banking Industry

International Journal of Case Studies in Business, IT, and Education (IJCSBE), 8(1), 272-291. ISSN: 2581-6942. (2023).

14 Pages Posted: 25 Apr 2024

Venkata Lakshmi Suneetha M. (https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=6606302) Srinivas University; The Oxford College of Engineering

P. S. Aithal (https://papers.ssrn.com/sol3/cf_dev/AbsByAuth.cfm?per_id=2519140) Poornaprajna College

Date Written: December 31, 2023

Abstract

Purpose: Shareholders are the real owners of the company. They provide capital to the business to get a better return on their investment. Maximizing shareholder wealth has become the primary goal of today's business world. No business entity can become profitable without producing a lot for various investors. There are some strategies to determine the organization productivity and valuation of investors. A cutting-edge form of top management, economic value added (EVA) is a way of valuing shareholder wealth. This helps ensure the true productivity of the organization at the expense of value and capital. The concept was first created by Stern Stewart and Co. The company proposed 164 changes in GAAP rules to calculate real economic profit and some changes in economic capital. MVA is another modern way of valuing shareholder wealth. It describes how efficiently a company uses shareholders' assets. The study made two corrections to the calculation of economic benefit and two corrections to the related population. Real estate and banking companies listed on the Bombay Stock Exchange were selected for the study. The purpose of the audit was to determine the value of investors in BSE-listed land and bank units based on EVA and MVA over a period of five years. Speculations were tested using ANOVA and T-TEST. The audit revealed that an organization like Legend Engine Corp expanded its EVA and MVA during this period.

Design/Methodology/Approach: Five BSE listed industries are considered for the present research work and analysed by using EVA and MVA.

Findings/Result: A profitable sector is identified. Opportunity is provided for the investors to buy, sell, or hold the stock to generate more profits in the selected sector. It has been observed that SBI has a high typical EVA unlike various banks but it has decreased in the long run. All financial organizations have a positive relationship between EVA and MVA.

Originality/Value: Among the organizations in the selected countries, Godrej Properties, and DLF are positively associated with MVA and investment wealth creation every 5 years. Choosing stocks from an industry is a big problem for investors because the market is unpredictable and offers more opportunities for traders and investors to buy sell or hold stocks and earn potential profits in the market. This study aims to compare EVA and MVA to provide some recommendations for stock and industry selection to all investors.

Keywords: EVA, MVA, Shareholder's Value, NOPAT, WACC, Capital Employed.

Suggested Citation >

Show Contact Information >

📆 Download This Paper (Delivery.cfm/SSRN_ID4769976_code2519140.pdf?abstractid=4769976&mirid=1)

Open PDF in Browser (Delivery.cfm/SSRN_ID4769976_code2519140.pdf?abstractid=4769976&mirid=1&type=2)

Part of **SPRINGER NATURE**

PROCEEDINGS JOURNALS BOOKS

Search

Series: Advances in Economics, Business and Management Research

Proceedings of the 3rd International Conference on Reinventing Business Practices, Start-ups and Sustainability (ICRBSS 2023)

A STUDY ON EFFECT OF JOB SATISFACTION, STRESS AND EMOTIONAL INTELLIGENCE ON J_B PERFORMANCE AMONG HEI FACULTY MEMBERS

<

A Study on Effect of Job Satisfaction, Stress and Emotional Intelligence on Job Performance among HEI Faculty Members

Authors

Sahana Achyutha^{1, *}, V. Lakshmi Suneetha¹

- ¹ Dept. of Management Studies, The Oxford College of Engineering, Bangalore, India
- * Corresponding author. Email: sahanaachyutha2020@gmail.com

Corresponding Author Sahana Achyutha

Available Online 20 February 2024.

A Sectoral Analysis of BSE-Listed Indian Pharma Companies | International Journal of Case Studies in Business, IT and Educati...

Home (https://www.supublication.com/index.php/ijcsbe/index) / Archives (https://www.supublication.com/index.php/ijcsbe/issue/archive) / Vol. 8 No. 1 (2024): Volume 8 Issue 1 (https://www.supublication.com/index.php/ijcsbe/issue/view/68) / Articles

A Sectoral Analysis of BSE-Listed Indian Pharma Companies

(https://www.supublication.com/index.php/ijcsbe/issue/view/68)

PDF (https://www.supublication.com/index.php/ijcsbe/article/view/1152/888)

Published: Mar 19, 2024

DOI: https://doi.org/10.47992/IJCSBE.2581.6942.0346 (https://doi.org/10.47992/IJCSBE.2581.6942.0346)

Keywords:

EPS, DPS, Investment attractiveness, Shareholder value creation

Venkata Lakshmi Suneetha M.

Post-Doctoral Fellow, Institute of Management & Commerce, Srinivas University, Mangalore, India, Also, Asst. Professor, Dept. of Management, The Oxford College of Engineering, Bangalore, India

Aithal P. S.

Senior Professor, Institute of Management & Commerce, Srinivas University, Mangalore, India

Abstract

Purpose: Investors, including domestic and international firms, venture capitalists, and financial institutions, rely on research to evaluate investment opportunities in the Indian pharmaceutical sector. Research helps assess factors such as market potential, company performance, R&D capabilities, regulatory environment, and risk-return profiles. Research plays a crucial role in guiding research and development (R&D) investments and priorities within the Indian pharmaceutical industry. By identifying unmet medical needs, emerging therapeutic areas, and technological advancements, research helps companies allocate resources effectively and focus on areas with the highest potential for impact and return on investment. The current research includes analysing financial statements, such as income statements and cash flow statements, to assess the profitability and earnings stability of pharmaceutical firms, and also investigate factors influencing EPS growth, such as revenue trends, cost structures, research and development (R&D) investments, regulatory environments, and market dynamics. Additionally, the study of DPS involves evaluating dividend payout ratios, dividend yield, dividend stability, and factors driving dividend decisions, including company profitability, cash flow generation, capital requirements, and shareholder preferences. Understanding the relationship between EPS and DPS in the Indian pharmaceutical sector provides valuable insights for investors, analysts, and policymakers in assessing the financial health, investment attractiveness, and shareholder value creation of pharmaceutical companies. Pharmaceutical companies listed on the Bombay Stock Exchange were selected for the study. Speculations were tested using ANOVA and T-TEST. The audit revealed that investors can invest in Dr. Reddys Laboratories, Abbott India, and Themis Medicare for their EPS to be maximum and Dr. Reddys Laboratories, Abbott India, and Novartis India for their DPS to be maximum.

Methodology: Fifteen BSE-listed pharmaceutical companies are considered for the present research work and analysed by using EPS and DPS.

Result: Selected Large, medium, and small Indian pharmaceutical companies listed on the BSE were the subjects of this study's analysis of their EPS and DPS. The websites of Money Control and the BSE provided the majority of the time series data used in the study on two different variables, EPS and DPS. Five years, from 2019 to 2020 to 2022–2023 are included in the analysis of the EPS and DPS. The BSE-listed Indian pharmaceutical businesses' EPS and DPS were examined in this study. Descriptive statistics (mean, standard error, standard deviation, skewness,

A Financial Performance Analysis of Indian Oil Exploration & Drilling Sector | International Journal of Applied Engineering and Ma...

Home (https://supublication.com/index.php/ijaeml/index) / Archives (https://supublication.com/index.php/ijaeml/issue/archive)

/ Vol. 8 No. 1 (2024): Volume 8 Issue 1 (https://supublication.com/index.php/ijaeml/issue/view/69) / Articles

A Financial Performance Analysis of Indian Oil Exploration & Drilling Sector

(https://supublication.com/index.php/ijaeml/issue/view/69)

PDF (https://supublication.com/index.php/ijaeml/article/view/1163/893)

Published: Mar 30, 2024

DOI: https://doi.org/10.47992/IJAEML.2581.7000.0220 (https://doi.org/10.47992/IJAEML.2581.7000.0220)

Keywords:

Profitability, Liquidity and Valuation ratios, Financial Performance, overall stability, growth potential, risk exposure

Venkata Lakshmi Suneetha M.

Post-Doctoral Fellow, Institute of Management & Commerce, Srinivas University, Mangalore, India, Also, Asst. Professor, Dept. of Management, The Oxford College of Engineering, Bangalore, India

Aithal P. S.

Senior Professor, Institute of Management & Commerce, Srinivas University, Mangalore, India

Abstract

Purpose: The study of financial performance analysis in the Indian oil and drilling sector serves a critical purpose in providing stakeholders with insights into the economic health, operational efficiency, and strategic positioning of companies within this industry. By analysing key financial metrics such as profitability, liquidity and valuation ratios, stakeholders including investors, policymakers, and industry participants can assess the sector's overall stability, growth potential, and risk exposure. Moreover, such analysis facilitates informed decision-making processes related to investment allocation, risk management strategies, policy formulation, and strategic planning. Understanding the financial performance of companies within the Indian oil and drilling sector is imperative for stakeholders to navigate the complexities of this dynamic industry, capitalize on opportunities, and mitigate potential challenges effectively. Oil Exploration and Drilling companies listed on the Bombay Stock Exchange were selected for the study.

Design/Methodology/Approach: Five BSE listed Oil Exploration and Drilling companies are considered for the present research work and analysed by using profitability, liquidity and valuation ratios.

Findings/Result: Selected Oil Exploration & Drilling sector companies listed on the BSE were the subjects of this study's analysis of their Profitability, Liquidity & Valuation ratios. The websites of Money Control and the BSE provided the majority of the time series data used in the study on three different ratios, Profitability, Liquidity & Valuation. Five years, from 2019 to 2020 to 2022–2023 are included in the analysis of Profitability, Liquidity & Valuation. It is recommended that investors can invest their money into ONGC, Reliance, and Oil India, Petronet LNG LTD. in order to maximise their investments.

Originality/Value: This study employs the financial analysis method to analyze profitability, liquidity and valuation of the selected Oil Exploration & Drilling Sector.

Home (https://www.supublication.com/index.php/ijcsbe/index) / Archives (https://www.supublication.com/index.php/ijcsbe/issue/archive) / Vol. 8 No. 2 (2024): Volume 8 Issue 2 (https://www.supublication.com/index.php/ijcsbe/issue/view/74) / Articles

Quantitative ABCD Analysis: Indian Household and Personal Care Sector

(https://www.supublication.com/index.php/ijcsbe/issue/view/74)

PDF (https://www.supublication.com/index.php/ijcsbe/article/view/1195/913)

Published: May 4, 2024

DOI: https://doi.org/10.47992/IJCSBE.2581.6942.0355 (https://doi.org/10.47992/IJCSBE.2581.6942.0355)

Keywords:

Indian household and personal care sector, Quantitative ABCD Analysis, ABCD Analysis Framework, Determinant issues, Key attributes

Venkata Lakshmi Suneetha M.

Post-Doctoral Fellow, Institute of Management & Commerce, Srinivas University, Mangalore, India

Aithal P. S.

Director, Poornaprajna Institute of Management, Udupi, India

Abstract

Purpose: The study aims to examine Indian Household and Personal care sector using the ABCD analytical methodology. It uses factor analysis and elementary analysis to evaluate some of the benefits, drawbacks, limitations, and advantages of the Indian Household and Personal care sector, offering a thorough grasp of the problems and their possible advantages.

Methodology: Exploratory: The exploratory research method is used where the relevant information are collected through keyword-based search using search engines like Google, Google Scholar, and Al-driven GPTs and analysed, compared, and evaluated using suitable analysing frameworks. The results are interpreted as new knowledge obtained from this research and suggested in the form of outcome postulates.

Findings/Result: The ABCD analytical approach indicates that both organizations and individuals are utilizing sustainable strategies to tackle pressing issues. By examining the Indian household and personal care sector, stakeholders can contribute to its growth, competitiveness, and societal impact, while ensuring responsible business practices and sustainable development.

Originality/Value: This study employs the ABCD analysis method to analyse the Indian household and personal care sector. The study explores the sector's dynamics, market trends, consumer preferences, and regulatory landscape enabling businesses to develop effective strategies for product development, branding, distribution, and marketing through determinant issues and key attributes.

Paper Type: Empirical Analysis

How to Cite

Venkata Lakshmi Suneetha M., & Aithal P. S. (2024). Quantitative ABCD Analysis: Indian Household and Personal Care Sector. International Journal of Case Studies in Business, IT and Education (IJCSBE), 8(2), 160–184. https://doi.org/10.47992/IJCSBE.2581.6942.0355

Home (https://supublication.com/index.php/ijcsbe/index) / Archives (https://supublication.com/index.php/ijcsbe/issue/archive)

/ Vol. 8 No. 2 (2024): Volume 8 Issue 2 (https://supublication.com/index.php/ijcsbe/issue/view/74) / Articles

Unlocking Potential in the Chemical Industry Sector: An Innovative SWOT Analysis Study

(https://supublication.com/index.php/ijcsbe/issue/view/74)

PDF (https://supublication.com/index.php/ijcsbe/article/view/1208/920)

Published: May 13, 2024

DOI: https://doi.org/10.47992/IJCSBE.2581.6942.0359 (https://doi.org/10.47992/IJCSBE.2581.6942.0359)

Keywords:

Chemical industry sector, SWOT Analysis, Innovation, Technological Advancements, Market Dynamics, Emerging Markets, Sustainable Practices, Strategic Decision-making.

Venkata Lakshmi Suneetha M.

Post-Doctoral Fellow, Institute of Management & Commerce, Srinivas University, Mangalore, India, Also, Asst. Professor, Dept. of Management, The Oxford College of Engineering, Bangalore, India

Aithal P. S.

Director, Poornaprajna Institute of Management, Udupi, India

Abstract

Purpose: The chemical industry sector stands at a pivotal juncture, with rapid technological advancements and evolving market dynamics driving the need for innovative strategies. This study aims to unlock the untapped potential within the chemical industry by employing a unique SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis approach.

Design/Methodology/Approach: A comprehensive SWOT analysis was conducted using a mixed-methods approach. Quantitative data was gathered through industry reports, market surveys, and financial analyses, while qualitative insights were derived from expert interviews and case studies.

Findings/Result: The SWOT analysis revealed significant insights into the current state of the chemical sector. Strengths such as technological innovation and research capabilities were identified, along with weaknesses like regulatory challenges and environmental concerns. Opportunities in emerging markets and sustainable practices were highlighted, while threats including global competition and supply chain disruptions were also recognized.

Originality/Value: This study offers a fresh perspective on the chemical industry's potential by combining traditional SWOT analysis with innovative methodologies. It provides actionable insights that industry stakeholders can leverage to drive strategic decision-making and unlock new growth opportunities.

Paper Type: Empirical Study

How to Cite

Home (https://supublication.com/index.php/ijmts/index) / Archives (https://supublication.com/index.php/ijmts/issue/archive)

/ Vol. 9 No. 2 (2024): Volume 9 Issue 2 (https://supublication.com/index.php/ijmts/issue/view/75) / Articles

Revving Up or Stalling Out? A Comprehensive SWOC Analysis of BSE listed India's Auto Sector

(https://supublication.com/index.php/ijmts/issue/view/75)

PDF (https://supublication.com/index.php/ijmts/article/view/1222/926)

Published: May 24, 2024

DOI: https://doi.org/10.47992/IJMTS.2581.6012.0347 (https://doi.org/10.47992/IJMTS.2581.6012.0347)

Keywords:

SWOC analysis, Indian auto industry, strengths, weaknesses, opportunities, challenges, qualitative research, industry analysis

Venkata Lakshmi Suneetha M.

Post-Doctoral Fellow, Institute of Management & Commerce, Srinivas University, Mangalore, India, Also, Asst. Professor, Dept. of Management, The Oxford College of Engineering, Bangalore, India

Aithal P. S.

Director, Poornaprajna Institute of Management, Udupi, India

Abstract

Purpose: The primary purpose of this research paper is to conduct a comprehensive SWOC (Strengths, Weaknesses, Opportunities, and Challenges) analysis of the Indian automobile sector, which plays a vital role in the economy by contributing to GDP, employment, and technological progress. Amidst globalization, technological changes, and evolving consumer preferences, the industry faces numerous internal and external factors affecting its performance. By systematically evaluating these factors, the research aims to provide insights into the sector's current state and future prospects, informing strategic decisions for stakeholders, policymakers, and investors. This study fills a gap in existing literature by offering a holistic assessment using the SWOC framework, uncovering strengths, weaknesses, opportunities, and challenges to support the industry's competitiveness and sustainability.

Design/Methodology/Approach: The study employs a qualitative research approach, utilizing both primary and secondary data sources. Primary data includes industry reports, company publications, and expert interviews, while secondary data encompasses academic journals, government publications, and reputable online sources. SWOC analysis is conducted to identify and evaluate the internal strengths and weaknesses of the industry, as well as external opportunities and challenges it faces.

Findings/Results: The SWOC analysis reveals several key insights into the Indian auto industry. Strengths such as a skilled workforce and a growing domestic market are counterbalanced by weaknesses such as infrastructure bottlenecks and regulatory challenges. Opportunities arising from technological advancements and export potential are tempered by threats such as global competition and changing consumer preferences.

Originality/Value: This research contributes to the existing literature by offering a comprehensive assessment of the Indian auto industry through the SWOC framework. By synthesizing insights from various data sources, the paper provides valuable insights for industry stakeholders, policymakers, and investors seeking to navigate the complexities of the Indian automotive landscape.

Published in: 2024 11th International Conference on Computing for Sustainable Global Development (INDIACom)